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Abstract

Bipolar Disorder is a chronic psychiatric illness characterized
by pathological mood swings associated with severe disruptions
in emotion regulation. Clinical monitoring of mood is key to the
care of these dynamic and incapacitating mood states. Frequent
and detailed monitoring improves clinical sensitivity to detect
mood state changes, but typically requires costly and limited
resources. Speech characteristics change during both depressed
and manic states, suggesting automatic methods applied to the
speech signal can be effectively used to monitor mood state
changes. However, speech is modulated by many factors, which
renders mood state prediction challenging. We hypothesize that
emotion can be used as an intermediary step to improve mood
state prediction. This paper presents critical steps in developing
this pipeline, including (1) a new in the wild emotion dataset,
the PRIORI Emotion Dataset, collected from everyday smart-
phone conversational speech recordings, (2) activation/valence
emotion recognition baselines on this dataset (PCC of 0.71 and
0.41, respectively), and (3) significant correlation between pre-
dicted emotion and mood state for individuals with bipolar dis-
order. This provides evidence and a working baseline for the
use of emotion as a meta-feature for mood state monitoring.
Index Terms: Emotion Dataset, Emotion in the Wild, Emotion
Recognition, Mood Prediction

1. Introduction
Bipolar disorder (BD) is a severe, chronic mental illness that
typically begins in early adulthood and is characterized by peri-
odic and pathological mood changes ranging from extreme lows
(depression) to extreme highs (mania) [1]. It is found in 1% of
the world’s population, with a core clinical expression pattern
related to emotion, energy, and psychomotor activity [2]. These
core clinical signs and symptoms are monitored to gauge the
health and progress of the individual in treatment [1]. The dy-
namic nature of BD demands efficient clinical monitoring to
detect mood changes in sufficient time to treat or mitigate their
severity. Intense clinical monitoring is effective but unrealistic
due to cost and the availability of skilled health care providers
[3]. Automatic passive mood monitoring addresses the need
for ongoing monitoring in a cost efficient manner to predict the
course and outcome of chronic human disease such as BD.

Current mood recognition systems are focused on mapping
between speech to mood directly, which is challenging due to
the complexity of the speech signal. We hypothesize that emo-
tion can simplify mood prediction by acting as an intermediary
between speech (rapidly varying) and mood (slowly varying).
Further, one of the hallmark symptoms of BD is emotion dys-
regulation, suggesting that the tracking of emotion changes will
provide important insights into an individual’s mood variation.
In this paper, we define emotion in terms of valence (positive

vs. negative) and activation (calm vs. excited), both of which
are observable from expressed behaviors such as speech.

Strategies for mobile monitoring for mental health have
mostly relied upon self-reported diagnosis of a disorder on a
device or social media to identify features indicative of the dis-
order [4], be it anxiety [5], BD [6], depression or anorexia [7].
However, these interactive self-reports are often incomplete or
misleading [8]. An alternative approach is to directly recognize
mood from observed behavior. Vanello et al. [9] and Faurholt et
al. [10] investigated how speech features could be used to char-
acterize mood states. Muaremi et al. in [11] used statistics of
phone calls, such as duration and frequency, to predict mood
episodes. Our own work has demonstrated that properties such
as speaking rate are also effective for detecting mood [12, 13].
However, a recurring theme in these studies is the challenge as-
sociated with detecting mood directly from speech, due in part
to the highly varying nature of the speech signal. We hypothe-
size that we will be able to improve mood detection by using an
intermediary (emotion) that has more slowly varying properties.

The relationship between emotion and mood has been gain-
ing attention. Stasak et al. investigated the utility of using
emotion to detect depressed speech [14], using the AVEC 2014
dataset [15]. However, these data were collected in a controlled
environment, potentially limiting their use “in the wild”. Car-
rillo et al. identified a relationship between emotional intensity
and mood in the context of BD [16]. However, they relied upon
transcribed interviews, rather than on acoustics directly.

The work presented in this paper leverages the PRI-
ORI (PRedicting Individual Outcomes for Rapid Intervention)
dataset, a longitudinal dataset of natural speech patterns from
individuals with BD [17]. Data were collected from individu-
als with BD for six to twelve months using smartphones with a
secure app that recorded their side of all phone conversations.
They were assessed weekly for depressive and manic symptoms
using standardized scales by a study clinician [12, 13, 17]. We
analyze a subset of this dataset, referred to as the PRIORI Emo-
tion Dataset, which is annotated with labels of valence and ac-
tivation. This provides an opportunity to associate natural ex-
pressions of emotion with changes in mood.

In this paper, we address: (1) the predictability of emotion
in natural smartphone conversations and (2) the relationship be-
tween mood and natural expressions of emotion. We describe
the collection of the full PRIORI dataset, as well as the cre-
ation of the PRIORI Emotion Dataset. We establish natural
speech emotion classification baselines on this dataset, which
achieve a Pearson correlation coefficient (PCC) of 0.71 and 0.41
for detecting activation and valence, respectively. Finally, we
demonstrate that there is a significant positive correlation be-
tween heightened mood and both activation and valence. Criti-
cally, we note that these emotion patterns are inherently subject-
dependent, highlighting the importance of attuning to individual
variability when designing mental health monitoring support.



Mood HamD YMRS Number # Per Subject
Euthymic ≤6 ≤6 70 5.8 ± 3.4

Manic <10 ≥10 27 2.7 ± 1.9
Depressed ≥10 <10 120 10.0 ± 6.4
Excluded Else Else 96 8.7 ± 6.7

Table 1: Mood state categories defined by HamD and YMRS
measures, including the number of total assessments and the
mean and standard deviation of assessments per subject.

2. PRIORI Dataset
The PRIORI dataset is composed of one-sided natural conversa-
tions recorded during daily smartphone usage (Samsung Galaxy
S3, S4, S5) [17, 13, 12]. The participants include 51 individu-
als with BD and nine healthy controls. The inclusion criteria
were: BD type I or II, no medical or neurological disease, and
no active history of substance abuse. All study participants were
provided with a smartphone and were asked to use the smart-
phone as their primary device. The smartphone has an app that
runs silently in the background, recording the speech with 8
kHz sampling frequency, and uploading the recordings to our
servers for analysis. Participants were enrolled for an average
of 32±16 weeks. The collection includes 52,931 calls and over
4,000 hours of speech.

Participants were clinically evaluated in weekly assessment
calls to assess the level of depression (Hamilton Depression
Scale (HamD) [18]) and mania (Young Mania Rating Scale
(YMRS) [19]). All other recordings are referred to as personal
calls. We assign mood labels to all assessment calls based on
the HamD and YMRS scales. We define four mood labels: eu-
thymic, manic, depressed, and excluded. A call is labelled eu-
thymic if it has a score of six or less on both the HamD and
YMRS scales; manic if the score is ten or greater on the YMRS
and less than ten on the HamD; and depressed if the score is
ten or greater on the HamD and less than ten on the YMRS. All
other assessments are excluded from our experiments (Table 1).

3. PRIORI Emotion Annotation
This work explores the relationship between mood state and
emotion expression, which necessitates access to a labeled cor-
pus over which emotion can be detected and emotion classifi-
cation algorithms can be validated. However, there are no natu-
ral smartphone conversational speech datasets annotated in this
manner. We addressed this limitation by generating the PRIORI
Emotion Dataset, a subset of the larger PRIORI dataset. The
PRIORI Emotion Dataset contains manual valence/activation
annotations of both assessment and personal calls. We use a
dimensional labeling strategy in this work [20], motivated by
the concept of core affect [21]. This construct provides a de-
contextualized manner of considering emotion expression.

The PRIORI Emotion dataset includes natural conversa-
tional speech from 12 subjects, seven females and five males,
totaling 11,337 calls (928 hours). The selected subjects are be-
tween 24 and 63 years old. We selected the subjects based on
three factors: (1) BD diagnosis, which allows us to examine the
link between emotion and bipolar mood (future work will fo-
cus on healthy controls); (2) used Samsung S5, which provides
microphone consistency, lack of which was identified as a chal-
lenge in our prior work [13]; (3) provided informed consent
for annotation of personal calls, which allows us to generate
ground-truth emotion labels.

We then annotate a subset of these data using: (1) segmen-
tation, (2) segment selection, (3) segment inspection, and (4)
segment annotation. We explain each in the following sections.

Segmentation: We first filter the set of calls to exclude
all recordings longer than one hour. This restriction is due
to the large memory requirements and processing time associ-
ated with these data. We then perform speech activity detection
(SAD), using the COMBO-SAD algorithm introduced by Sad-
jadi and Hansen [22]. We form contiguous segments following
the methodology used in our prior work [13]. The resulting
segments contain continuous speech with no intermediate si-
lence. This procedure provides 167,339 segments (10,563 seg-
ments from assessment calls and 156,776 segments from per-
sonal calls) with the average length of 6.32 ±5.89 seconds.

Segment Selection: We identified a subset of segments for
manual annotation from the assessment and personal calls. Our
first filter was for segment length, to increase the likelihood that
segments contained sufficient data to assess, but were not so
long that the emotion would vary over the course of the seg-
ment. We exclude segments shorter than three seconds and
longer than 30 seconds. Next, we sampled from both personal
calls and assessment calls. Assessment calls are important be-
cause they are the only calls that are directly associated with
mood labels. Personal calls are important because they contain
natural unstructured speech. Therefore, we sampled from both
to ensure a diversity of examples. For each assessment call, we
select up to ten random segments. For personal calls, we sample
as a function of proximity in time to assessment calls, preferring
those that occurred closer to the assessments. We select 1,200
segments randomly considering the weight of max(4 − d, 1),
where d is the number of days between the call and its future as-
sessment day. Calls on the day of assessment receive a weight of
four (these are most closely linked to the HamD/YMRS score).
Other calls receive a weight that reduces linearly up to 3 days
before assessment day, calls outside this range have a weight
of one. This results in 17,237 segments, 2,837 and 14,400 seg-
ments from the assessment and personal calls, respectively.

Segment Inspection: We manually inspected each seg-
ment prior to annotation and removed those that were deemed
inappropriate for the annotation task, if: (1) background noise
dominates the speech signal, (2) speech content of the segment
lasts less than two seconds, (3) subject is not talking to the
phone (e.g., talking to someone else in the room), (4) emotion
clearly varies over the course of the segment, and (5) segment
contains identifiable information (e.g., name, address, phone
number, etc.). This results in 13,611 segments (25.20 hours),
2,209 and 11,402 segments from the assessment and personal
calls, respectively.

Segment Annotation: We annotated the activation and va-
lence of the 13,611 speech segments using the established pic-
torial manikins method across a 9-point Likert scale (1: very
low to 9: very high) [20]. There were 11 annotators (7 female,
4 male) aged between 21 and 34 and native speakers of English.

We conducted a training session for each annotator, includ-
ing a training video and manuscript, to introduce the annotation
software and provide annotation examples. In the training ses-
sion, annotators were asked to consider two important points:
1. Although challenging, we asked that annotators to only con-

sider the acoustic characteristics of the recordings, not the
lexical content. They were asked to avoid letting speech con-
tent “color” their activation and valence labels.

2. We asked that annotators consider the subject-specificity of
emotion expression. When approaching a new subject, an-
notators were asked to spend some time listening to a few
segments without assigning a rating in order to get a better
sense of what that person’s baseline sounds like.



Figure 1: (a) Distribution of the number of labels annotated
for the segments. (b) Distribution of the activation and valence
ratings in the PRIORI Emotion Dataset. Categorical labels are
provided only as reference points for the four quadrants.

We further supported the assessment of subject-dependent
emotion patterns by providing individual context for each par-
ticipant. The annotation software randomly selected a partici-
pant and presented all segments of that participant, in random
order, to the annotator before moving on to the next participant’s
segments. In this way, annotators can consider participant-
specific features to define emotion labels more accurately.

We collected between two and six labels for each segment
(3.83 ± 1.31 labels per segment). Figure 1 shows the distribu-
tion of the number of annotations for each segment. See Figure
1 for a distribution of the activation and valence labels defined
by the annotators. We found that the activation and valence val-
ues are significantly correlated with a PCC of 0.46 (p < 0.01).

4. Methods

We describe two emotion prediction systems used in this work.
The first system is a deep feed-forward neural network (FFNN)
that operates on the eGeMAPS feature set [23]. The second
system is a convolutional neural network (CNN) classifier that
operates on log Mel-frequency bank (log-MFB) features [24].

4.1. Acoustic Features

eGeMAPS – The eGeMAPS feature set is a carefully designed
standardized acoustic feature set for affective computing. It is
an 88-dimensional feature vector that includes features relating
to energy, excitation, spectral, cepstral, and dynamic informa-
tion. We extract the eGeMAPS feature set using the openS-
MILE toolkit with default parameters [25], as in our previous
work [26].
Log-MFB – Previous research has demonstrated that log mel-
frequency bank (log-MFB) spectral features outperform other
temporal frame-level acoustic features such as MFCCs [24, 27,
28]. The details of our log-MFB extractor are explained in [27].
We extract 40-dimensional log-MFB features with 25ms frame
length and 10ms frame shift using the Kaldi toolkit [29]. We
perform global z-normalization on all features.
Feature Handling – Unlike eGeMAPS that is a fixed-length
feature vector for each recording, log-MFB has a variable length
(its length is proportional to the length of the recording). Train-
ing a neural network with a variable-length input is problematic;
the network structure must be consistent with the input length
while the length varies for different recordings. We use the zero-
padding technique to avoid this problem.

Measure eGeMAPS FFNN MFBs Conv-Pool
Activation PCC 0.642 ± 0.076 0.712±0.077
Activation CCC 0.593 ± 0.071 0.660±0.090

Activation RMSE 0.207 ± 0.012 0.201 ± 0.028

Valence PCC 0.271 ± 0.053 0.405±0.062
Valence CCC 0.191 ± 0.031 0.326±0.052

Valence RMSE 0.199 ± 0.015 0.194 ± 0.016
Table 2: The results of the emotion prediction systems. A bolded
result indicates that the conv-pool method is significantly better
than FFNN, using a paired t-test with p < 0.01.

4.2. Models

Deep FFNN – This network contains a stack of fully-connected
dense layers with tanh activation functions followed by an out-
put layer with a linear activation function. We predict activation
and valence values independently.
Conv-Pool – We implemented Conv-Pool network, proposed
in [30], due to its high emotion recognition accuracy on the
IEMOCAP [31] and MSP-IMPROV [32] datasets. The Conv-
Pool network contains three major components: (1) a stack of
convolutional layers; (2) a global pooling over time layer; and
(3) a stack of dense layers. The convolutional layers create a se-
quence of feature maps that identify emotionally salient regions
within variable length utterances. The global pooling layer au-
tomatically extracts a set of call-level statistics. Aldeneh et al.
found that a max-pooling layer is effective for emotion recog-
nition [30]. Finally, the stack of dense layers predicts the labels
from the call-level features. We used ReLU and linear activa-
tion functions for intermediate and output layers.

5. Emotion Detection Baselines
The ground truth annotation for a segment is the average of all
individual annotations. We normalized the ground truth labels
by subtracting the rating midpoint of 5 and scaling to the range
of [−1, 1]. Let x be a rating, the normalization was performed
through x−5

4
. Our preliminary analyses showed that this trans-

formation helped the networks to learn the bias and standard
deviation of the labels more quickly.

We will measure system performance using the repeated
cross-validation method introduced in [33]. Each experiment
is repeated for five total runs, where a run is defined as six ran-
domly selected folds. In each run, the folds are shuffled by ran-
domly assigning two subjects to each of the six folds. We then
use round-robin cross-validation: at each step, one fold (two
subjects) is assigned to testing, one is used for tuning parame-
ters and early stopping, and the rest are used for training. This
procedure generates one test measure per fold, resulting in six
measures. Over the course of the five runs, a matrix of 6-by-5
test measures is output. We report the mean over all experiments
as the experiment mean. The experiment standard deviation is
the mean standard deviation within runs. Significance was de-
termined using a repeated cross-validation paired t-test with six
degrees of freedom, as shown in [33].

We implemented both networks using Keras with Ten-
sorFlow backend [34]. We optimized RMSE during training
through the Adam optimizer [34] with a fixed learning rate of
0.0001. All weights were initialized using the Xavier uniform
algorithm [34] and all bias parameters were set to zero. We
set epoch size to 64. To train the FFNN, we performed cross-
validation to tune the number of dense layers (2,4,8) and the
number of nodes in each layer (200, 400, 800). To train Conv-
Pool network, we set the number of initial convolutional layers



Subject 1 2 3 4 5 6 7 8 9 10 11 12
Mean Activation (Mania) -0.12 1.06 1.56 0.45 -0.13 -0.03 0.73 0.02 1.35 -0.86 - -

Mean Activation (Depression) -0.49 -0.81 0.83 -0.18 -0.20 -0.34 0.29 -0.26 -1.56 -0.35 -0.61 -3.33

Mean Valence (Mania) 0.05 0.72 0.66 0.35 -0.25 0.32 0.89 -0.02 0.55 -0.60 - -
Mean Valence (Depression) -0.42 -0.98 0.13 -0.08 -0.31 -0.37 0.37 -0.27 -1.39 0.05 0.00 -3.13

Table 3: Subject-specific mean activation and valence ratings for manic and depressed states. Dashes indicate that the subject did not
have any manic episodes. Bold font indicates statistically significant differences between manic and depressed states (t-test, p < 0.01).

Subject 1 2 3 4 5 6 7 8 9 10 11 12
PCC of Activation and YMRS -0.02 0.46 0.19 0.04 0.11 0.06 0.13 0.19 0.08 -0.18 0.39 0.55
PCC of Activation and HamD -0.11 -0.13 -0.25 -0.11 -0.04 -0.10 0.04 -0.10 -0.57 -0.11 -0.16 -0.80

PCC of Valence and YMRS 0.00 0.44 0.17 0.00 0.08 0.13 0.19 0.20 -0.04 -0.14 0.40 0.55
PCC of Valence and HamD -0.10 -0.13 -0.33 -0.10 -0.06 -0.13 0.09 -0.10 -0.52 -0.05 0.09 -0.76

Table 4: The PCC between each emotion rating and mood state. Even subjects without manic episodes are included in this analysis, as
YMRS ratings are available. Significant correlations are bolded (t-test, p < 0.01).

and final dense layers equal and validated them over a set of
(2,3). The number of nodes (200,400) and the length of the con-
volution kernels (4,8) were also validated. We trained FFNN
and Conv-Pool networks for 100 and 15, epochs respectively.
For each test fold, we selected the best epoch and the best net-
work structure based on the validation concordance correlation
coefficient (CCC) value.

We use three popular metrics to compare the resulting net-
works: PCC, CCC, and RMSE. Using Conv-Pool, we achieved
a PCC of 0.712 and 0.405 for activation and valence, and found
that Conv-Pool has significantly better performance than FFNN
using all measures except RMSE (Table 2). This supports pre-
vious work that demonstrated the importance of modeling tem-
poral characteristics of speech in emotion recognition [30]. We
hypothesize that the lack of improvement for RMSE is due to
the fact that RMSE places more weight on selecting the correct
bias of the ratings. Subject-dependent or speaker-adapted mod-
els may improve RMSE. Finally, as shown in previous datasets,
activation is easier to predict from speech than valence [35].

6. Mood Analysis
In this section, the link between BD mood states and predicted
emotion is tested. To facilitate this analysis, we use our Conv-
Pool models to predict emotion on the 10,563 assessment call
segments. We use the 30 different models from the repeated
cross-validation as an ensemble and take the mean output.

We normalize the predicted emotion labels using subject-
dependent euthymic z-normalization. Our preliminary analy-
ses demonstrated the importance of considering how a subject
varies about his/her own baseline, which is defined as his/her
euthymic periods. We calculate the mean and standard devi-
ation of the valence/activation ratings over all calls associated
with euthymic mood states. We then normalize each segment
based on these values, reducing the effect of subject biases.

Table 3 shows the mean activation and valence ratings, cal-
culated over the segments in each of the different mood states.
Table 4 shows the PCC between each of the dimensional emo-
tion ratings (activation and valence) and each of the mood rat-
ings (YMRS and HamD). We note that:

• In the majority of subjects, the mean of both emotion ratings
during manic states is more positive and activated compared
to the corresponding within-subject ratings during depressed
states. Significance was determined by a t-test with p < 0.01.
This provides evidence that emotion behavior may be effec-
tive for predicting mood states.

• For almost all subjects, activation and valence are signif-
icantly positively correlated with YMRS and significantly

negatively correlated with HamD (p < 0.01). This supports
the hypothesis that heightened mood states come with height-
ened emotions.

• Even after normalizing each subject by his/her euthymic seg-
ments, the distribution of emotion ratings between subjects
is significantly different (using a one-way ANOVA with p <
0.01). We also used a Tukey-Kramer posthoc test of the 66
possible pairwise subject comparisons. Activation was found
to be significantly different in 51 cases and valence was found
to be significantly different in 48 cases (p < 0.01).

• Our experiments did not show a correlation between the
within-call variance of emotion ratings and mood states.

7. Conclusion
In this work, we present the PRIORI Emotion Dataset - a natu-
ral dataset of emotional speech passively-recorded from patients
with BD. The dataset is unique in that it has a high proportion
of emotional segments of speech and is the only in the wild
telephonic dataset, annotated for emotion. The dataset contains
more than 25 hours of speech (13,611 segments) with the aver-
age of 3.83 labels per segment. We train a CNN model and show
that it is possible to accurately extract activation ratings from
unstructured speech. We achieve a PCC of 0.712 and 0.405 for
activation and valence, respectively. We perform exploratory
analysis to show how these predicted emotion labels, normal-
ized using subject’s euthymic baseline, correlate to YMRS and
HamD values. We find that mean of both emotion ratings during
manic states is significantly higher than the mean of the corre-
sponding ratings during depressed states.

The annotation process is ongoing. After annotation con-
cludes, this dataset will be released to the community due to
its potential to impact the field of affective computing. Fu-
ture work includes implementing subject-dependent models for
emotion recognition so that we can directly predict the ratings
instead of normalizing them post-hoc. This would help in build-
ing subject-dependent mood recognition.
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N. Goel, M. Hannemann, P. Motlı́ček, Y. Qian, P. Schwarz et al.,
“The Kaldi speech recognition toolkit,” 2011.

[30] Z. Aldeneh and E. M. Provost, “Using regional saliency for speech
emotion recognition,” in Acoustics, Speech and Signal Processing
(ICASSP), 2017 IEEE International Conference on. IEEE, 2017,
pp. 2741–2745.

[31] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower,
S. Kim, J. N. Chang, S. Lee, and S. S. Narayanan, “Iemocap:
Interactive emotional dyadic motion capture database,” Language
resources and evaluation, vol. 42, no. 4, p. 335, 2008.

[32] C. Busso, S. Parthasarathy, A. Burmania, M. AbdelWahab,
N. Sadoughi, and E. M. Provost, “Msp-improv: An acted corpus
of dyadic interactions to study emotion perception,” IEEE Trans-
actions on Affective Computing, vol. 8, no. 1, pp. 67–80, 2017.

[33] R. R. Bouckaert and E. Frank, “Evaluating the replicability of sig-
nificance tests for comparing learning algorithms,” in Pacific-Asia
Conference on Knowledge Discovery and Data Mining. Springer,
2004, pp. 3–12.

[34] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.
[35] K. P. Truong, D. A. Van Leeuwen, M. A. Neerincx, and F. Jong,

“Arousal and valence prediction in spontaneous emotional speech:
felt versus perceived emotion,” 2009.


