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Abstract
The goal of continuous emotion recognition is to assign an emo-
tion value to every frame in a sequence of acoustic features.
We show that incorporating long-term temporal dependencies is
critical for continuous emotion recognition tasks. To this end,
we first investigate architectures that use dilated convolutions.
We show that even though such architectures outperform previ-
ously reported systems, the output signals produced from such
architectures undergo erratic changes between consecutive time
steps. This is inconsistent with the slow moving ground-truth
emotion labels that are obtained from human annotators. To
deal with this problem, we model a downsampled version of the
input signal and then generate the output signal through upsam-
pling. Not only does the resulting downsampling/upsampling
network achieve good performance, it also generates smooth
output trajectories. Our method yields the best known audio-
only performance on the RECOLA dataset.
Index Terms: neural networks, convolutional neural networks,
computational paralinguistics, emotion recognition

1. Introduction
Emotion recognition has many potential applications including
building more natural human-computer interfaces. Emotion can
be quantified using categorical classes (e.g., neutral, happy, sad,
etc.) or using dimensional values (e.g., valence-arousal). In
addition, emotional labels can be quantified statically, over units
of speech (e.g., utterances), or continuously in time.

In this work, we focus on problems where the goal is to rec-
ognize emotions in the valence-arousal space, continuously in
time. The valence-arousal space is a psychologically grounded
method for describing emotions [1]. Valence ranges from neg-
ative to positive, while activation ranges from calm to excited.
Research has demonstrated that it is critical to incorporate long-
term temporal information for making accurate emotion predic-
tions. For instance, Valstar et al. [2] showed that it was neces-
sary to consider larger windows when making frame-level emo-
tion predictions (four seconds for arousal and six seconds for
valence). Le et al. [3] and Cardinal et al. [4] found that increas-
ing the number of contextual frames when training a deep neural
network (DNN) for making frame-level emotion predictions is
helpful but only to a certain point. Bidirectional long short-term
memory networks (BLSTMs) can naturally incorporate long-
term temporal dependencies between features; explaining their
success in continuous emotion recognition tasks (e.g., [5]).

In this work, we investigate two convolutional network
architectures, dilated convolutional networks and downsam-
pling/upsampling networks, that capture long-term temporal de-
pendencies. We interpret the two architectures in the context of
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continuous emotion recognition and show that these architec-
tures can be used to build accurate continuous emotion recogni-
tion systems.

2. Related Work
Even though the problem of emotion recognition has been ex-
tensively studied in the literature, we only focus on works that
predicted dimensional values, continuously in time. Successful
attempts to solving the continuous emotion recognition prob-
lem relied on DNNs [4], BLSTMs [5], and more commonly,
support vector regression (SVR) classifiers [6]. With the ex-
ception of BLSTMs, such approaches do not incorporate long-
term dependencies unless coupled with feature engineering. In
this work, we show that purely convolutional neural networks
can be used to incorporate long-term dependencies and achieve
good emotion recognition performance, and are more efficient
to train than their recurrent counterparts.

In their winning submission to the AVEC 2016 challenge,
Brady et al. [6] extracted a set of audio features (Mel-frequency
cepstral coefficients, shifted delta cepstral, prosody) and then
learned higher-level representations of the features using sparse
coding. The higher-level audio features were used to train linear
SVRs. Povolny et al. [7] used eGeMAPS [8] features along with
a set of higher-level bottleneck features extracted from a DNN
trained for automatic speech recognition (ASR) to train linear
regressors. The higher level features were produced from an
initial set of 24 Mel filterbank (MFB) features and four differ-
ent estimates of the fundamental frequency (F0). Povolny et al.
used all features to train linear regressors to predict a value for
each frame, and considered two methods for incorporating con-
textual information: simple frame stacking and temporal con-
tent summarization by applying statistics to local windows. In
contrast, in this work we show that considering temporal depen-
dencies that are longer than those presented in [6, 7] is critical
to improve continuous emotion recognition performance.

He et al. [5] extracted a comprehensive set of 4, 684 fea-
tures, which included energy, spectral, and voicing-related fea-
tures, and used them to train BLSTMs. The authors introduced
delay to the input to compensate for human evaluation lag and
then applied feature selection. The authors ran the predicted
time series through a Gaussian smoothing filter to produce the
final output. In this work, we show that it is sufficient to use 40
MFBs to achieve state-of-the-art performance, without the need
for special handling of human evaluation lag.

Trigeorgis et al. [9] trained a convolutional recurrent net-
work for continuous emotion recognition using the time domain
signal directly. The authors split the utterances into five-second
segments for batch training. Given an output from a the trained
model, the authors applied a chain of post-processing steps (me-
dian filtering, centering, scaling, time shifting) to get the final



output. In contrast, we show that convolutional networks make
it possible to efficiently process full utterances without the need
for segmenting. Further, since our models work on full-length
utterances, we show that it is not necessary to apply any post-
processing steps as described in [9].

On the ASR end, Sercu et al. [10] proposed viewing ASR
problems as dense prediction tasks, where the goal is to as-
sign a label to every frame in a given sequence, and showed
that this view provides a set of tools (e.g., dilated convolu-
tions, batch normalization, efficient processing) that can im-
prove ASR performance. The authors argued that ASR ap-
proaches required practitioners to splice their input sequences
into independent windows, making the training and evaluation
procedures cumbersome and computationally inefficient. In
contrast, the author’s proposed approach allows practitioners to
efficiently process full sequences without requiring splicing or
processing frames independently. The authors showed that their
approach obtained the best published single model results on the
switchboard-2000 benchmark dataset.

In this work we treat the problem of continuous emotion
recognition as a dense prediction task and show that, given this
view of the problem, we can utilize convolutional architectures
that can efficiently incorporate long-term temporal dependen-
cies and provide accurate emotion predictions.

3. Problem Setup
In this work, we focus on the RECOLA database [11] following
the AVEC 2016 guidelines [2]. The RECOLA database pro-
vides continuous, dimensional (valence and arousal) ground-
truth descriptions of emotions. Even though the AVEC 2016
challenge is multi-modal in nature, we only focus on the speech
modality in this work. The RECOLA database contains a to-
tal of 27 utterances (9 train; 9 validation; 9 test), each having
a total duration of 5 minutes. Ground-truth continuous annota-
tions were computed on a temporal granularity of 40ms from
six annotators (three females).

Features. We use the Kaldi toolkit [12] to extract 40-
dimensional log MFB features, using a window length of 25ms
with a hop size of 10ms. We perform speaker-specific z-
normalization on all extracted features. RECOLA provides con-
tinuous labels at a granularity of 40ms. Thus, we stack four
subsequent MFB frames to ensure correspondence between hop
sizes in the input and output sequences.

Problem Setup. Given a sequence of stacked acoustic
features X = [x1,x2, . . . ,xT ], where xt ∈ Rd, the goal
is to produce a sequence of continuous emotion labels y =
[y1, y2, . . . , yT ], where yt ∈ R.

Evaluation Metrics. Given a sequence of ground-truth la-
bels y = [y1, y2, . . . , yT ] and a sequence of predicted labels
ŷ = [ŷ1, ŷ2, . . . , ŷT ], we evaluate the performance using the
root mean squared error (RMSE) and the Concordance Corre-
lation Coefficient (CCC) to be consistent with previous work.
The CCC is computed as follows:

CCC =
2σ2

yŷ

σ2
y + σ2

ŷ + (µy − µŷ)2

where µy = E(y), µŷ = E(ŷ), σ2
y = var(y), σ2

ŷ = var(ŷ),
and σ2

yŷ = cov(y, ŷ).

4. Preliminary Experiment
We first study the effect of incorporating temporal dependencies
of different lengths. The network that we use in the preliminary
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Figure 1: Increasing the size of the receptive field improves per-
formance for both arousal and valence. Solid lines represent
mean CCC from 10 runs and shaded area represents standard
deviation from the runs.

experiments consists of a convolutional layer with one filter of
variable length from 2 to 2048 frames, followed by a tanh non-
linearity, followed by a linear regression layer. We vary the
length of the filter and validate the performance using CCC. We
train our model on the training partition and evaluate on the
development partition. We report the results of our preliminary
experiment in Figure 1. The results show that incorporating
long-term temporal dependencies improves the performance on
the validation set up to a point.

This demonstrates that including long-term contextual in-
formation increases performance. The observed diminishing
gains in performance past 512 (20.48 seconds) frames may oc-
cur either due to the increased number of parameters or because
contextual information becomes irrelevant after 512 frames.
Covering contexts as large as 512 frames still provided im-
provements in performance compared to results obtained from
covering smaller contexts. The utility of contexts spanning 512
frames (20.48 seconds) is contrary to previous work that con-
sidered much smaller time scales. For instance, Valstar et al. [2]
only covered six seconds worth of features and Povolny et al. [7]
considered a maximum of eight seconds worth of features. Re-
sults from the preliminary experiment suggest that continuous
emotion prediction systems could benefit from incorporating
long-term temporal dependencies. This acts as a motivation for
using architectures that are specifically designed for consider-
ing long-term dependencies.

5. Methods
In this section, we describe the two architectures that we pro-
pose to use to capture long-term temporal dependencies in con-
tinuous emotion prediction tasks.

5.1. Dilated Convolutions

Dilated convolutions provide an efficient way to increase the
receptive field without causing the number of learnable param-
eters to vastly increase. Networks that use dilated convolutions
have shown success in a number of tasks, including image seg-
mentation [13], speech synthesis [14] and ASR [10].

van den Oord et al. [14] recently showed that it is possi-
ble to use convolutions with various dilation factors to allow
the receptive field of a generative model to grow exponentially
in order to cover thousands of time steps and synthesize high-
quality speech. Sercu et al. [10] showed that ASR could benefit
from dilated convolutions since they allow larger regions to be
covered without disrupting the length of the input signals. Con-
tinuous emotion recognition could benefit from such properties.
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Figure 2: A visualization of our dilated convolution network.
We use convolutions with a different dilation factor for different
layers. We use a 1× 1 convolution for the last layer to produce
the final output.
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Figure 3: A visualization of our downsampling/upsampling net-
work. Downsampling compresses the input signal into shorter
signal which is then used to reconstruct a signal of the same
length by the upsampling sub-network. We use the transpose
convolution operation to perform upsampling.

When compared to filters of regular convolutions, those of
dilated convolutions touch the input signal every k time steps,
where k is the dilation factor. If [w1, w2, w3] is a filter with a
dilation factor of zero, then [w1, 0, w2, 0, w3] is the filter with
a dilation factor of one and [w1, 0, 0, w2, 0, 0, w3] is the filter
with a dilation factor of two, and so on. We build a network that
consists of stacked convolution layers, where the convolution
functions in each layer use a dilation factor of 2n, where n is
the layer number. This causes the dilation factors to grow ex-
ponentially with depth while the number of parameters grows
linearly with depth. Figure 2 shows a diagram of our dilated
convolution network.

5.2. Downsampling/Upsampling

The emotion targets in the RECOLA database are sampled at a
frequency of 25 Hz. Using Fourier analysis, we find that more
than 95 percent of the power of these trajectories lies in fre-
quency bands that are lower than 1 Hz. In other words, the out-
put signals are smooth and they have considerable time depen-
dencies. This finding is not surprising because we do not expect
rapid reactions from human annotators. Networks that use di-
lated convolutions do not take this fact into account while mak-
ing predictions, causing them to generate output signals whose
variance is not consistent with the continuous ground truth con-
tours (Section 6.2). To deal with this problem, we propose the
use of a network architecture that compresses the input signal
into a low-resolution signal through downsampling and then re-
constructs the output signal through upsampling. Not only does
the downsampling/upsampling architecture capture long-term
temporal dependencies, it also generates a smooth output tra-
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Figure 4: Effect of downsampling/upsampling on CCC.

jectory.
We conduct an experiment to investigate the effect of down-

sampling/upsampling on continuous emotion labels. First, we
convert the ground truth signals to low-resolution signals us-
ing standard uniform downsampling. Given the downsampled
signals, we then generate the original signals using spline inter-
polation. We vary the downsampling factor exponentially from
2 to 128 and compute the CCC between the original signals and
the reconstructed ones. The results that we show in Figure 4
demonstrate that distortions caused by downsampling with fac-
tors up to 64 are minor (< 5% loss in CCC relative to original).

The network that we use contains two subnetworks: (1) a
downsampling network; (2) an upsampling network. The down-
sampling network consists of a series of convolutions and max-
pooling operations. The max-pooling layers reduce the resolu-
tion of the signal and increase the effective receptive field of
the convolution layers. Initial experiments showed that max-
pooling was more effective than other pooling techniques.

The upsampling function can be implemented in a num-
ber of ways [15]. In this work we use the transposed convo-
lution1 [16, 17] operation to perform upsampling. Transposed
convolutions provide a learnable map that can upsample a low-
resolution signal to a high-resolution one. In contrast to stan-
dard convolution filters that connect multiple input samples to
a single output sample, transposed convolution filters generate
multiple outputs samples from just one input sample. Since it
generates multiple outputs simultaneously, the transposed con-
volution can be thought of as a learnable interpolation function.

Downsampling/upsampling architectures have been used in
many computer vision tasks (e.g., [15, 18, 19]). For instance,
Noh et al. [15] showed that transposed convolution operations
can be effectively applied to image segmentation tasks. In
addition to vision applications, downsampling/upsampling ar-
chitectures have been successfully applied to speech enhance-
ment problems [20], where the goal is to learn a mapping be-
tween noisy speech spectra and their clean counterparts. Park et
al. [20] demonstrated that downsampling/upsampling convolu-
tional networks can be 12× smaller (in terms of the number of
learnable parameters) than their recurrent counterparts and yet
yield better performance on speech enhancement tasks.

The main goal of a transposed convolution is to take an
nx-dimensional low-resolution vector x and generate an ny-
dimensional high-resolution vector y using an nw-dimensional
filter w (where ny > nx). Similar to other linear transforms, y
can be expressed as: y = Tx, where T is the linear ny-by-nx

transform matrix that is given by T = [T1,T2, ...,Tnx ]. Ti is
the i-th column of T and can be written as:

Ti = [0, ..., 0︸ ︷︷ ︸
s(i−1)

, wT︸︷︷︸
nw

, 0, ..., 0︸ ︷︷ ︸
s(nx−i)

]T

1Other names in literature include deconvolution, upconvolution,
backward strided convolution and fractionally strided convolution.
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Figure 5: A visualization of the predictions produced by the two
models plotted against ground-truth for a 40-second segment.

where s is the upsampling factor. This linear interpolator is
able to expand the input vector x to the output vector y with
the length of ny = s(nx − 1) + nw. Note that the matrix
T is nothing but the transposed version of the standard strided
convolution transform matrix. Our experiments confirm that the
proposed downsampling/upsampling network generates smooth
trajectories.

6. Results and Discussion
6.1. Experimental Setup

We build our models using Keras [21] with a Theano back-
end [22]. We train our models on the training partition of the
dataset and use the development partition for early stopping and
hyper-parameter selection (e.g., learning rate, number of layers
layer size, filter width, l2 regularization, dilation factors, down-
sampling factors). We optimize CCC directly in all setups. We
repeat each experiment five times to account for the effect of
initialization. The final test evaluation is done by the AVEC
2016 organizers (i.e., we do not have access to test labels). Our
test submissions were created by averaging the predictions pro-
duced from the five runs.

We report published results from the literature as baselines.
Almost all previous works only report their final test results
based on multi-modal features. We only show results that are
reported on the audio modality in the results tables. We also
compare our performance to that of an optimized BLSTM re-
gression model, described in [23]. Our final dilated convolu-
tion structure has a depth of 10 layers, each having a width of
32. Our final downsampling/upsampling network contains four
downsampling layers, one intermediate layer, and four trans-
posed convolution layers, each having width of 32 for arousal
and 128 for valence. We use a downsampling factor of three.
We do not splice the input utterances into segments. Instead,
we train on full length utterances and use a batch size of one.

6.2. Results

Tables 1 and 2 show the development and test results for arousal
and valence, respectively. Each row shows the results for one
setup. We only include results from the literature that are based
on the speech modality and use a “–” to indicate unreported
results.

Both proposed systems show improvements over baseline
results by Valstar et al. [2]. Our dilated convolution based sys-
tem provides improvements of 5.6% and 19.5% over baseline
systems for arousal and valence, respectively. Our downsam-
pling/upsampling system provides improvements of 5.1% and
33.9% over baseline systems for arousal and valence, respec-
tively. We report the results we obtain from our BLSTM system
to provide a reference point. Our BLSTM system performs well
when compared to the baseline results.

Table 1: Arousal results.

Method Dev. Test
RMSE CCC RMSE CCC

Valstar et al. [2] – .796 – .648
Brady et al. [6] .107 .846 – –

Povolny et al. [7]∗ .114 .832 .141 .682
BLSTM [23] .103 .853 .143 .664

Dilated .102 .857 .137 .684
Down/Up .100 .867 .137 .681

Table 2: Valence results.

Method Dev. Test
RMSE CCC RMSE CCC

Valstar et al. [2] – .455 – .375
Brady et al. [6] .132 .450 – –

Povolny et al. [7]∗ .142 .489 .355 .349
BLSTM [23] .113 .518 .116 .499

Dilated .117 .538 .121 .486
Down/Up .107 .592 .117 .502

The proposed methods outperform BLSTMs and are more
efficient to train on long utterances. For instance, given a con-
volutional network and a BLSTM network with approximately
equal number of learnable parameters, one epoch of training on
the AVEC dataset takes about 13 seconds on the convolutional
network while one epoch of training takes about 10 minutes on
the BLSTM network. This suggests that convolutional architec-
tures can act as replacement for recurrent ones for continuous
emotion recognition problems.

We show an example 40-second segment of the predic-
tions made by our two networks along with the ground-truth
predictions in Figure 5. The figure shows that the predic-
tions produced by the downsampling/upsampling network are
much smoother than those produced by the dilated convolu-
tion networks. We believe that the structure of the downsam-
pling/upsampling network forces the output to be smooth by
generating the output from a compressed signal. The com-
pressed signal only stores essential information that is necessary
for generating trajectories, removing any noise components.

7. Conclusion
We investigated two architectures that provide different means
for capturing long-term temporal dependencies in a given se-
quence of acoustic features. Dilated convolutions provides a
method for incorporating long-term temporal information with-
out disrupting the length of the input signal by using filters
with varying dilation factors. Downsampling/upsampling net-
works incorporate long-term dependencies by applying a series
of convolutions and max-poolings to downsample the signal and
get a global view of the features. The downsampled signal is
then used to reconstruct an output with a length that is equal to
the uncompressed input. Our methods achieve the best known
audio-only performance on the AVEC 2016 challenge.
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