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Abstract—This article proposes a method to improve the perfor-
mance of deterministic plus stochastic model (DSM-) based feature 
extraction by integrating the contextual information. One pre-
cious advantage of speech synthesis over speech recognition is 
that in both training and testing phases of synthesis, contextual 
information is available. However, similar to recognition, this 
invaluable knowledge has been forgotten during acoustic feature 
extraction of speech synthesis. DSM expresses the residual of 
Mel-cepstral analysis through a summation of two components, 
namely deterministic and stochastic. This study proposes to model 
the deterministic component through a novel context-dependent 
principal component analysis (CD-PCA), and the stochastic com-
ponent through the conventional high-pass filtered noise. Fur-
thermore, due to the high dependency of the proposed feature 
extraction on state boundaries, the feature analysis and HMM-
based modeling are performed in an iterative manner. Subjective 
evaluations conducted on a Persian speech database confirm the 
effectiveness of the proposed synthesis system. 

Keywords-context-dependent PCA, context-dependent residual 
modeling, excitation modeling, HMM-based speech synthesis, 
statistical parametric speech synthesis. 

I.  INTRODUCTION 
Statistical parametric speech synthesis (SPSS) based on 

hidden Markov model (HMM) has dominated speech synthesis 
research area over the last decade [1]. It is a direct result of 
several favorable SPSS characteristics such as high flexibility 
to modify voice characteristics [2], capability to exploit all 
speech recognition techniques (e.g. adaptation methods) [2], 
proper support of multilingual synthesizers [3], improved cov-
erage of acoustic space, low memory requirement [1].  

All of the above advantages are achieved as consequences 
of statistical parametric representation of speech in SPSS. A 
typical SPSS system comprises two distinct phases [1], namely 
training and synthesis. Training phase starts with the extraction 
of acoustic features [4] and contextual factors [5] for all utter-
ances in training database. Next, the relationship between 
acoustic features and contextual factors is modeled using a 
context-dependent statistical model [4]. In the synthesis phase, 
contextual factors are first obtained for an input text. Thereaf-
ter, a parameter generation (PG) algorithm [6] is employed to 
generate acoustic trajectories. Generated trajectories are then 
fed into a vocoder [7, 8] to generate synthesized speech.  

However, this statistical parametric representation results in 
major quality reduction in synthesized speech [1]. This prob-
lem is known to be a result of three main issues, namely 
vocoding distortion [7, 8], deficiencies of statistical parametric 

models [1], and accuracy of parameter generation algorithms 
[6]. This paper is an attempt to alleviate the first issue and im-
prove the performance of vocoders. 

A. Related Work 
Several efforts have been devoted to reduce the vocoding 

distortion in SPSS. A great number of them are based on the 
well-known source-filter model [9] initially inspired by human 
voice production system. This simple model generates speech 
by applying a certain filter to a source (excitation) signal. Phys-
iologically, the excitation signal refers to the glottal air flow 
produced by vocal organs, and the filter indicates human vocal 
tract response. According to this physiological analogy, in or-
der to have a reliable and efficient source-filter model, these 
glottal source excitation signal and vocal tract filter have to be 
separated from each other using glottal inverse filtering [9], 
which is an excessively difficult inverse problem. Therefore, 
several systems [4, 7, 8, 10-12] consider a much simpler 
framework instead of solving the difficult glottal inverse filter-
ing problem. In their framework, the vocal tract filter captures 
the overall spectral envelope of speech and the glottal excita-
tion signal corresponds to the residual signal obtained by pass-
ing the speech through the inverse of the estimated filter [10].  

Traditionally, the widely-used linear prediction (LP) or 
Mel-cepstral coefficients are adopted to parameterize the spec-
tral envelope of speech in the vocal tract filter. Furthermore, 
traditional systems make use of a random noise (for unvoiced 
frames) and an impulse train (for voiced frames) to synthesize 
the glottal excitation signal [1]. This naïve expression of the 
excitation signal is obviously not efficient enough, and synthe-
sized speech using this excitation suffers from a strident buzzi-
ness. Accordingly, many research activities have been carried 
out to enhance the performance of the traditional excitation 
model. A large percentage of them rely on mixed excitation 
(ME) [4, 7, 8, 10-12] framework which generates the excitation 
signal through a superposition of both periodic and non-
periodic components. Yoshimura et al. [4] was the first group 
that incorporated ME approach, used in MELP vocoder, in 
HMM-based speech synthesis. This system was later improved 
by Maia et al. [11] approach by applying two different state-
dependent filters to the periodic and non-periodic components. 
The parameters of this model, including filter coefficients and 
the amplitudes of pulse train, are jointly optimized in the train-
ing phase of SPSS. Liljencrants-fant (LF) [10] glottal flow 
model is another system that has been shown to be reasonably 
effective for HMM-based speech synthesis. The LF model pro-
duces a waveform with a decaying spectrum at higher frequen-
cies, which is more consistent with the natural source excita-



 

 

tion signal. The speech representation and transformation us-
ing adaptive interpolation of weighted spectrum (STRAIGHT) 
[12] is another popular ME-based vocoder used in parametric 
representation of speech. In this vocoder, aperiodicity meas-
urements are defined to adjust the weight of periodic and non-
periodic parts of excitation signal. It should be noted that 
STRAIGHT is currently considered to be one of the best 
vocoding methods for HMM-based speech synthesis. 

Among all the above methods, deterministic plus stochastic 
model (DSM) [7, 8] is finally selected as the baseline system in 
this paper, due to its superior quality. DSM excitation is simply 
represented by a summation of two distinct components: a de-
terministic waveform, and a stochastic noise. Both components 
are trained using a speaker-dependent dataset of pitch-
synchronous (PS) residual frames. In this approach, the noted 
principal component analysis (PCA) is responsible for express-
ing the deterministic part, and the stochastic part is synthesized 
through a high-frequency noise modulated both in time and 
frequency. Authors in [8] have reported that the DSM vocoder 
outperforms the traditional pulse excitation dramatically and 
provides a quality equivalent to STRAIGHT. 

B. Scope of the Paper 
The main idea of this study is to incorporate contextual in-

formation into the DSM vocoder in order to improve the per-
formance of the predominant DSM. To this end, the PCA tech-
nique, applied to express the deterministic component of DSM, 
is replaced with a new method named context-dependent PCA 
(CD-PCA). CD-PCA initially clusters all PS residual frames 
into several contextual groups. To perform the clustering, a 
greedy binary decision tree construction algorithm which min-
imizes the root mean square error (RMSE) of the generated 
residual signal is developed. This decision tree-based clustering 
scheme then contributes to generate the mean residual frame in 
CD-PCA. More precisely, in contrast to the conventional PCA 
which computes the mean component through a straightfor-
ward averaging, in the proposed CD-PCA, the mean compo-
nent is generated through a weighted sum of many cluster pro-
totypes; therefore, the mean vector obtained by CD-PCA is 
more similar to the target residual. Another important aspect of 
the proposed system is that its feature extraction and statistical 
modeling are mutually dependent, since on one side, feature 
extraction is a preliminary step for statistical modeling, and on 
the other side, changing statistical models leads to different 
state occupation probabilities and consequently different con-
text dependent feature extraction. As a result, to have an opti-
mum system, HMM training procedure and feature extraction 
have to be performed in an iterative manner.  

The rest of the paper is organized as follows. In Section 2, 
the conventional DSM is briefly explained. Section 3 introduc-
es the proposed system in detail. Experimental conditions and 
results are presented in Section 4 and final remarks are given in 
Section 5. 

II. DETERMINISTIC PLUS STOCHASTIC MODEL 
To explain the context-dependent deterministic plus sto-

chastic model (CD-DSM), first, a brief description of DSM is 
given in this section. DSM [7, 8] starts with the extraction of 
PS residual frames for all utterances in the dataset according to 

the following instructions. F0 trajectories and residual wave-
forms have to be extracted first. Glottal closure instances 
(GCIs) [13] are then recognized by locating the highest discon-
tinuity in the residual signal. The desired PS frames are finally 
extracted using a GCI-centered with two period-long Blackman 
windowing. 

After isolating the residual frames, deterministic and sto-
chastic components of all frames have to be separated from 
each other. These components occupy two distinct spectral 
bands delimited by the maximum voiced frequency. Finally, 
the extracted deterministic and stochastic components are 
modeled independently. 

A. Modeling of the Deterministic Component 
As mentioned before, PCA approach is employed in DSM 

to decompose the low-frequency component on an orthonormal 
basis. Note that all frames have to be normalized in both dura-
tion and energy before applying the PCA. Two points have to 
be taken into account in length-normalization: 1) It should pre-
serve the shape of all frames; 2) It should not lead to energy 
holes during synthesis process [8]. 

B. Modeling of the Stochastic Component 
The method applied to represent the stochastic part is en-

tirely in accordance with harmonic noise model (HNM) frame-
work [14]. According to this framework, the stochastic wave-
form   ( ) is generated by convolving a white Gaussian noise 
 ( ) with an autoregressive model  (   ) and then controlling 
its time amplitude with a simple envelope  ( ) [14]. In other 
words, 

  ( )   ( ) [ (   )   ( )], (1) 

where   denotes the convolution operator. Conventionally, the 
auto-regressive model  (   ) is considered to be identical for 
all frames of the dataset and therefore it does not require any 
parametric representation [8]. 

III. CONTEXT-DEPENDENT DSM 
DSM is a speaker-dependent vocoder; therefore, it is able to 

exploit speaker-specific information efficiently. However, con-
textual factors are not used during DSM procedures; while, 
they are available in speech synthesis applications. More pre-
cisely, DSM deals with various contexts in the same manner; 
while, it is possible to use different transformations for differ-
ent contexts and improve the quality of conventional DSM. 

Figure 1 compares three residual signals extracted from dif-
ferent phonemes of Persian language. As it is realized from this 
figure, these signals seem to be entirely different; therefore, 
designing the same residual modeling method for all contexts 
of the database is not a good option. 

A. CD-DSM architecture 
The overall architecture summarizing the proposed speech 

synthesis system that exploits the CD-DSM vocoder can be 
found in Figure 2. In accordance with SPSS framework, this 
system also consists of two phases: train and synthesis.  

The train phase starts with feature extraction followed by 
context-dependent statistical modeling module. Features in-
clude mcep coefficients, F0 trajectory and contextual factors 



 

 

that are incorporated with residual parameters. In order to ex-
tract the residual parameters, first, residual signal has to be 
obtained through applying spectral envelope inverse filter to 
the original speech waveform. The proposed CD-DSM analyz-
er is then employed to extract the desirable residual parameters. 
CD-DSM requires state occupation probabilities and contextual 
factors in addition to all inputs used in the conventional DSM 
(including residual signal and F0 trajectory). These occupation 
probabilities, on one side, are determined by stochastic model-
ing, and on the other side, modify the CD-DSM transform pa-
rameters applied in stochastic modeling. Therefore, CD-DSM 
and statistical modeling are mutually dependent and have to be 
trained together iteratively. Due to the intensive computation 
involved in each iteration, this paper proposes to initialize the 
occupation probabilities accurately in order to reduce the num-
ber of required iterations. An efficient initialization is to bor-
row the probabilities from a phoneme-dependent HMM simply 
trained with mcep stream. Using this initialization, the model 
can be converged rapidly (just in 2 or 3 iterations). 

As it is shown in Figure 2, the synthesis phase is carried out 
by sequentially applying PG algorithm, CD-DSM residual syn-
thesis and finally MLSA speech synthesis.  To the extent that 
CD-DSM requires occupation probabilities, the PG algorithm 
has to be able to generate the probabilities along with acoustic 
trajectories. Certain PG algorithms, such as the expectation 
maximization (EM-) based method proposed in [15], implicitly 
compute the occupation probabilities, but many others, such as 
the global variance (GV-) based algorithm, cannot directly 
provide occupation probabilities. For the second group, it is 
possible to first generate acoustic trajectories, and then com-
pute the probabilities by applying forward and backward algo-
rithm [16] to generated trajectories. 

B. CD-DSM analysis 
A workflow explaining the CD-DSM analysis block is pre-

sented in Figure 3. According to this workflow, CD-DSM 
analysis is performed in 4 main steps as follows.  

Step 1- PS framing: Similar to DSM, the first step is to 
isolate pitch-synchronous frames from the residual waveform. 
PS framing requires identifying the location of glottal closure 
instances in residual signal. SEDREAMS algorithm [13] is ex-

ploited for GCI detection in this study. PS frames are then 
simply extracted by applying a GCI-centered Blackman win-
dow of two pitch periods long. Figure 4 shows a typical residu-
al signal and its extracted PS frame. 

Step 2- DS separation: In this step, the residual signal has 
to be split in deterministic and stochastic components. It is as-
sumed that these components lie in distinct spectral bands de-
limited by the maximum voiced frequency (4 kHz); therefore, 
DS separation can be accomplished using a simple hard-
filtering method. 

Step 3- Deterministic modeling: PCA is normally consid-
ered for deterministic part. Preliminary to PCA, PS frames 
have to be normalized both in pitch period and energy. Deter-
ministic part is then decomposed into a number of orthonormal 
bases obtained by the proposed CD-PCA.  

In CD-PCA, all normalized PS frames are clustered using a 
decision tree structure. The decision tree is a binary tree in 
which a contextual question is attached to each intermediate 
node and clusters are defined through terminal nodes. For each 

 

Figure 1.  Residual signal extracted for phonemes /a/, /m/ and /@/. 

 

Figure 2.  Block diagram of the proposed synthesis system with the 
embedded CD-DSM vocoder. 
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PS frame a single path from the root to one of the terminal 
nodes is traversed by recursively answering contextual ques-
tions and consequently the PS frame is assigned to a cluster.  

The decision tree structure is built using a greedy top-down 
optimization procedure [16]. Initially, all of the PS frames are 
grouped into a unique cluster represented by the root node of 
the tree. A clustering error, which evaluates the efficiency of 
clusters, is also calculated in this step. The root node is then 
split into two nodes by finding the question which results in 
maximum reduction in clustering error. This procedure is then 
repeated by selecting the best pair of terminal node and ques-
tion which yields the greatest decrease in clustering error until 
this decrease falls below a threshold. Generation error of PS 
residual frames is defined as the clustering error in this study. 

To express the generation error mathematically, suppose we 
are given   deterministic residual frames {  ( )}    , all nor-
malized in   samples and clustered through a decision tree with 
  leaves. Additionally, let us define   as the total number of 
untied states in HMM,   ( ) as the probability of occupying s-
th state at n-th residual frame, and   ( ) as an indicator func-
tion of cluster  .   ( ) represents a binary function that takes 
the decision tree into account and determines whether the  -th 
state belongs to cluster   or not. According to the above nota-
tions, prototype frame of the  -th cluster,  ̂ ( ), can be simply 

calculated by averaging all frames placed in that cluster. In 
other words, 

          ̂ ( )  
∑   ( ) 
   ∑   ( )  ( ) 

   
∑   ( ) 
   ∑   ( ) 

   
��� (2) 

This prototype signal is the most reasonable signal that can 
be generated for each cluster; therefore, the generation error 
can be computed as:  

  ∑ ∑   ( ) ∑   ( ) 
   

 
   

 
   ∑ (  ( )  ̂ ( ))

  
   

 ∑ ∑   ( ) ∑   ( ) 
   

 
   

 
   

. (3) 

Using this error measure, the decision tree construction 
procedure can be accomplished. The decision tree structure and 
all cluster prototype signals obtained through Eq. (2) have to be 
saved for the next PCA module. Note that, in this study, 5 in-
dependent decision trees are trained for 5 states of HMM.  

The residual frames are then decomposed into their princi-
ple components using CD-PCA. CD-PCA is slightly different 
from conventional PCA in such a way that local mean signals 
of each cluster (the prototype PS frame) is used instead of the 
conventional global mean. Localizing mean component of 
PCA using contextual information results in more accurate 
residual modeling and consequently more favorable synthesis 
system.  

Step 4- Stochastic modeling: Stochastic modeling is com-
pletely identical to the noise component modeling in HNM 
[14]. It corresponds to a white noise modulated in both time 
and frequency as it is described in Section 2.2. 

C. CD-DSM synthesis 
The synthesis part of CD-DSM is simply accomplished 

through the reverse procedure of CD-DSM analysis. More spe-
cifically, deterministic and stochastic components are first con-
structed and then combined using overlap-and-add method to 
generate the output residual signal. It should be noted that 
mean component of CD-PCA is achieved by traversing deci-
sion trees and applying Eq. (2). Figure 5 shows the overall 
structure of the CD-PCA synthesis. 

IV. EXPERIMENTS 
We compare three speech synthesis systems based on tradi-

tional, DSM and CD-DSM excitation modeling approaches. 
Experimental conditions are first explained and then the results 

 

Figure 3.  Workflow of the proposed CD-DSM analysis. 

 

Figure 4.  An example of the applied PS framing. 
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of subjective evaluations are reported. 

A. Experimental conditions 
In order to train systems, a Persian speech dataset [17, 18] 

comprising 1000 sentences from a male speaker is employed 
throughout our experiments. Utterances of this database are 
between five to twenty words long and have an average dura-
tion of eight seconds. This database is specifically designed for 
the purpose of single-speaker speech synthesis applications. It 
covers most frequent Persian words, all bi-letter combinations, 
all bi-phoneme combinations, and the most frequent Persian 
syllables. 31 synthesis units, including 30 phonemes and a si-
lence, are considered in the modeling phase. Speech wave-
forms are recorded with 16 kHz sampling rate and are win-
dowed by a 25-ms Blackman window with a 5-ms shift. 40 
Mel-cepstral coefficients, a fundamental frequency, residual 
features and their delta and delta-delta coefficients are em-
ployed as our acoustic features. Additionally, global variance 
(GV)-based parameter generation algorithm [6] is applied in 
the synthesis phase. 

In our experiments, a multi-stream left-to-right with no skip 
path MSD-HMM [1] is trained as the acoustic model. Decision 
trees of context-dependent HMM-based acoustic models are 
built using maximum likelihood criterion and the sizes of trees 
are determined by MDL principle [1]. Publicly available HTS 
toolkit is slightly modified to be able to perform the HMM-
based acoustic modeling phase. HTS with five streams of data 
are considered: one stream for the Mel-cepstral coefficients, 
one for the fundamental frequency, one for the derivatives of 
fundamental frequency, one for the PCA weights of the deter-
ministic part, and one for the PCA weights derivatives.  

All experiments are conducted on 4 different training sets 
including 100, 200, 400, and 800 utterances. Furthermore, a 
fixed set of 200 utterances, not included in the training sets, is 
employed as the test set. 

B. Experimental results 
Two well-known subjective evaluations are carried out in 

order to prove the effectiveness of the proposed system in da-
tabases with different sizes. These evaluations include a com-
parative mean opinion score (CMOS) test [7] with a 7-point 
scale, ranging from -3 (meaning that method A is much better 
than method B) to 3 (meaning the opposite), and a preference 

scoring [7]. Accordingly, twenty non-professional native lis-
teners were presented with 30 randomly chosen pairs of syn-
thesized speech generated by different systems. Listeners were 
asked to select the synthesized speech which sounds better and 
determine how much is better (much better, better, slightly 
better, or about the same). The results are shown in Figures 6 
and 7. 

Both CMOS tests and preference scores confirm the supe-
riority of the proposed CD-DSM over DSM and traditional 
residual modeling approaches. As it can be seen in the figures, 
this superiority of CD-DSM is reduced for limited training da-
tabases. It is mainly due to the fact that statistical modeling is 
not accurate enough for small databases. 

V. CONCLUSION 
One of the main problems of statistical parametric speech 

synthesis (SPSS) systems, namely the distortion of vocoding 
procedure, was addressed in this paper. To alleviate this prob-
lem, it is proposed taking advantage of the contextual infor-
mation in SPSS vocoding module. A novel context-dependent 
principle component analysis (CD-PCA) is designed to im-
prove the performance of deterministic plus stochastic model 
(DSM) applied in excitation modeling of mcep-based vocoder. 
Conducted subjective tests confirm the improvement of the 
proposed method. 
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Figure 5.  Block diagram of CD-PCA synthesis. 
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(a) (b) (c) 

Figure 7.  Preference score as a function of the number of utterances used for training: Comparison between (a) DSM and traditional, (b) CD-DSM and 
traditional, (c) CD-DSM and DSM. 
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