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ABSTRACT

In this paper, we present an analysis of different multimodal fusion
approaches in the context of deep learning, focusing on pooling
intermediate representations learned for the acoustic and lexical
modalities. Traditional approaches to multimodal feature pooling
include: concatenation, element-wise addition, and element-wise
multiplication. We compare these traditional methods to outer-
product and compact bilinear pooling approaches, which consider
more comprehensive interactions between features from the two
modalities. We also study the influence of each modality on the
overall performance of a multimodal system. Our experiments on
the IEMOCAP dataset suggest that: (1) multimodal methods that
combine acoustic and lexical features outperform their unimodal
counterparts; (2) the lexical modality is better for predicting va-
lence than the acoustic modality; (3) outer-product-based pooling
strategies outperform other pooling strategies.
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1 INTRODUCTION

Human communication consists of linguistic and paralinguistic
cues [22]. The linguistic elements of speech encode the message
(e.g., words) that a speaker is communicating, while the paralinguis-
tic elements encode how the message is expressed. Paralinguistic
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elements can alter the meaning of a message (e.g., statement vs.
question) or convey emotions (e.g., excitement, anger, etc.). Conse-
quently, emotion recognition systems should consider both of these
elements. In this paper, we explore deep learning architectures for
multimodal speech emotion recognition that use both linguistic and
paralinguistic features. Conventionally, multimodal fusion in deep
learning uses pooling techniques to combine representations from
different modalities to form a joint multimodal representation [9].
However, it is unclear which pooling technique is most effective
for combining acoustic and lexical feature for the task of valence
prediction. In this work, we investigate different pooling strategies
that can be used to combine information from these two modalities.

Previous work showed that systems that incorporate both acous-
tic and lexical features are more accurate than those that only incor-
porate features from one modality [2, 12]. Traditionally, these multi-
modal approaches rely upon either early-fusion or late-fusion [19].
In late-fusion, a model is independently built for each modality, and
decisions are generated from these independent models. These de-
cisions are then combined to make a final decision. In early-fusion,
multimodal feature vectors are created by combining the feature
vectors from each modality. These augmented feature vectors are
then used to learn a model. Early-fusion allows a model to consider
low-level interactions between features from multiple modalities
when making a prediction. However, these approaches assume a
level of temporal synchrony between the individual modalities,
which may not be valid. This is in contrast to late-fusion, where
individual models consider features from only one modality, ob-
scuring time-varying properties but alleviating the assumption of
time-synchrony.

In this work, we investigate approaches for pooling representa-
tions from the acoustic and lexical modalities in neural networks
for the end goal of making valence predictions. The pooling strate-
gies that we investigate include element-wise summation, element-
wise multiplication, concatenation, and outer-product. In addition,
we also experiment with the multimodal compact bilinear pool-
ing (CBP) approach [9], which provides a method for reducing
the number of parameters obtained from a regular outer-product.
Outer-product-based methods for pooling features allow the model
to consider more expressive interactions between the features from
the two modalities [9]. This is due to the fact that taking the outer-
product allows all pairs of features from the two vectors to in-
teract. Such methods showed success in computer vision applica-
tions [9, 15], but their use has not been investigated in linguis-
tic/paralinguistic tasks.
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2 RELATED WORK

Li et al. [14] and Poria et al. [19] used models that were trained
independently on different modalities as feature extractors. Li et
al. applied a maximum entropy classifier to predict the speakers’
stance in idealogical debates given lexical and acoustic features
extracted from separately trained models. Poria et al. used lexi-
cal features extracted from a convolutional neural network along
with manually extracted acoustic and visual features to perform
multimodal sentiment predictions using a multiple kernel learning
(MKL) classifier. Poria et al. experimented with both early-fusion
and late-fusion methods and showed that early-fusion was more
effective. Both works showed that models that used multimodal fea-
tures performed better than those that only used unimodal features.
In contrast, our model is trained in an end-to-end fashion, avoiding
the need to train different parts separately. The model is trained to
jointly extract representations from the different modalities under
one loss function.

Perez-Rosas et al. [16], Jin et al. [12], and Brilman et al. [2] all
extracted high-level knowledge-based features to be used in a sup-
port vector machine (SVM) classifier. Perez-Rosas et al. looked at
the problem of multimodal sentiment analysis in YouTube video
reviews using acoustic, visual, and bag-of-words textual features
to find that multimodal systems outperform unimodal ones. Jin
et al. used OpenSmile [8] and bag-of-words features to recognize
emotions and compare the early- and late-fusion methods to find
that late-fusion performs best. Finally, Brilman et al. extracted a
comprehensive set of multimodal features, and then performed an
analysis to identify features that are most indicative of successful
debate performance. Brilman et al. showed that the audio modal-
ity was most predictive and a multimodal system, via late-fusion,
outperforms unimodal systems.

In contrast, in our work we do not rely on high-level features,
the development of which requires expert-knowledge in speech and
language processing. In addition, we consider neural approaches to
multimodal modelings instead of SVM-based ones. The inputs to
our model consist of frequency-domain representation of speech
signals and word2vec feature representations. In our work we also
investigate different pooling strategies and their impact on overall
performance.

3 DATASET AND FEATURES

Dataset. We focus our study on the IEMOCAP dataset [3]. IEMO-
CAP was collected to elicit realistic dyadic interactions between
actors. Each utterance in IEMOCAP was labeled for both valence
and arousal on a 5-point Likert scale by at least two distinct annota-
tors. We use the 10,032 utterances that have both the acoustic and
lexical content. An utterance in IEMOCAP has an average duration
of 4.5 seconds with a standard deviation of 1.9 seconds. We chose to
use IEMOCAP because: (1) it is one of the largest emotion datasets;
(2) it provides both the .wav files and their associated transcripts;
(3) all utterances were recorded in English.

Labels.We convert the 5-point scale used for describing valence
values to a 3-point scale following the approach described by Chang
et al. [5]. This is done by pooling valence levels 1 and 2 into a single
łlowž value and pooling valence levels 4 and 5 into a single łhighž
value. We generate fuzzy labels for each utterance by representing
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Figure 1: Overall network architecture.

the labels from each annotator as one-hot vectors and computing
the mean over the vectors. For instance, if three annotators labeled
an utterance [0, 0, 1], [0, 0, 1], and [0, 1, 0] each, then the final label
vector representation would be [0, 0.3, 0.7] and the correct class
label would be 2 (where the possible options are {0, 1, 2}). We treat
the problem as a three-way classification problem, where the goal
is to assign a label from {0, 1, 2} to a given utterance.

Acoustic Features.We extract 40Mel Filterbank (MFB) features
by sliding a 25 millisecond Hamming window with a step-size of 10
milliseconds. As a result, each utterance is represented as a sequence
of 40-dimensional feature vectors. MFBs have shown success in
many speech processing applications, including speech recognition
and emotion recognition [4, 21].

Lexical Features. We represent each word in the dataset as
a 300-dimensional vector using a pre-trained word2vec model1.
word2vec representations have shown success in sentiment anal-
ysis tasks [13]. Sentiment analysis from text is closely related to
predicting valence in emotional speech. Thus, we expect word2vec
representations to be useful for our task.

4 METHODS

4.1 Architecture

The multimodal architecture that we use is shown in Figure 1. The
hyper-parameters that we consider are shown in Table 1. The net-
work architecture accepts two input streams, one for each modal-
ity. The acoustic input stream takes a sequence of 40-dimensional
vectors, while the lexical input stream takes a sequence of 300-
dimensional vectors.

Acoustic Input. We pass the sequence of acoustic features
through five layers of 1D convolution and 1D max-pooling to re-
duce the temporal resolution of the acoustic input sequence by 25,
in order to make training faster (since the acoustic features have a
temporal resolution of 10 milliseconds). We then pass the resulting
sequence to bidirectional gated recurrent unit (GRU) layers [7] for
temporal modeling. Previous work showed that GRUs can have
comparable performance to that of long short-termmemory (LSTM)

1https://code.google.com/archive/p/word2vec/
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Table 1: Hyper-parameters used in the validation process.

Hyper-parameter Values

number of conv. kernels {64, 128}
conv. kernel width {2}

number of conv. layers {5}
1D max-pooling kernel width {2}

number of GRU layers {1, 2}
GRU layers width {32, 64}

number of dense layers {0, 1}
dense layers width {0, 128}
CBP output width {256, 1024, 2048}

units while using fewer parameters [7]. One of the main differences
between a GRU and an LSTM unit is that a GRU has only two gates
(as opposed to three) and it does not contain internal memory cells.
Given the output sequence representation from the GRU layers, we
induce a fixed-length feature vector by averaging the sequential
outputs as described in [11], since it was shown that this can result
in better discrimination between emotions when compared to only
considering the output of the last layer.

Lexical Input.We pass the sequence of lexical feature vectors
through bidirectional GRU layers and then induce a fixed-length
representation by taking the average as we did for the acoustic
features. We do not pass the lexical features through initial convo-
lution or pooling because sequences of lexical features are much
shorter than those of acoustic features.

Multimodal Pooling. For the unimodal systems, we feed the
output from the average pooling layer to fully-connected layers
before feeding them into a softmax layer (i.e., we skip the multi-
modal feature pooling step in Figure 1). For the multimodal systems,
we pool the features obtained from the two modalities using the
strategies described below and then feed the resulting features into
fully-connected layers followed by a softmax layer.

4.2 Pooling Strategies

Given the representations for each modality, the next step is to pool
these two representations to form a shared multimodal representa-
tion to be used for further modeling and prediction. We consider
the following pooling strategies to combine the lexical and acoustic
intermediate representations: (1) concatenation; (2) element-wise
addition; (3) element-wise multiplication; (4) outer-product; (5) com-
pact bilinear pooling (CBP). Unlike traditional pooling methods,
outer-product and CBP provide a more expressive way to consider
the interactions between features from the two modalities. Taking
the outer-product of two feature vectors considers the interactions
between each pair of features from the two vectors. The problem
with taking the outer-product, however, is the quadratic increase
in the number of parameters. CBP [10] can be used to compress
the results obtained from an outer-product. In particular, we uti-
lize the multimodal variant of CBP [9], which makes taking the
outer-product between multimodal vectors more feasible.

4.3 CBP

Given two input vectors, x and y, bilinear pooling is simply a linear
transformation that considers all pairs of features from the two

Table 2: Performance obtained using different pooling

strategies. We assert significance when p < 0.05 under a

paired t-test.

Method UAR ρ

unimodalÐacoustic .590 .320
unimodalÐlexical .648‡ .540‡

concatenation .680† .581†

summation .683† .578†

multiplication .687† .588†

outer-product .694† .601†∗

CBP .693† .605†∗

‡: significantly better than unimodalÐacoustic
†: significantly better than unimodalÐlexical and Ðacoustic

∗: significantly better than concatenation

input vectors. Bilinear pooling can be obtained by first taking the
outer-product of the two input vectors, (x ⊗ y), and then following
it by a dense layer. CBP can be thought of as a sampling based
approximation to bilinear pooling. The approximation is done using
Tensor Sketch Projection [17, 18], and utilizes the property that
Ψ(x ⊗ y,h, s) = Ψ(x ,h, s) ∗ Ψ(y,h, s), where Ψ is the projection
function, h and s are vectors of randomly sampled parameters, and
∗ is the convolution operation. This property obviates the need for
computing outer-products of the two input vectors directly. The
projection function is computed as follows:Ψ(x ,h, s)i =

∑
j :hj=i (sj ·

vj ), where x ,h, s ∈ Rn , hj is sampled from {1, ...,d}, sj is sampled
from {−1, 1}, and d is the desired output dimension. In this work
we use the CBP implementation by Ronghang Hu2.

5 EXPERIMENTS

5.1 Recipe

We follow a leave-one-speaker-out evaluation scheme. The dataset
contains a total of five sessions, where each session has data from
a male and a female speaker. This results in 10 unique speakers in
total. For each fold, we use one speaker for testing and the other
speaker within the same session for validation and early stopping.
We use the remaining eight speakers for training.

We use unweighted average recall (UAR) and Pearson correlation
(ρ) as our evaluation metrics. UAR is a popular metric used when
dealing with imbalanced classes [20]. In cases where ground-truth
labels have a tie, we accept predictions for either position as a
correct answer. So if [0, 0.5, 0.5] is the ground-truth label, then class
labels 1 and 2 are considered correct predictions in the evaluation
process. To compute Pearson correlation, we convert the network’s
output to numerical values by taking the expected value, similar to
[5].

We implement our models using Keras [6] with a TensorFlow
back-end [1]. We use RMSprop [23] to train our models and use a
weighted cross-entropy loss function to account for class imbalance.
We use fuzzy labels in the training process similar to [5]. We run
each experiment three times to account for random initialization
of the parameters and report the ensemble performance. We sweep
through hyper-parameters values shown in Table 1 and pick the

2https://github.com/ronghanghu/tensorflow_compact_bilinear_pooling
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Table 3: Confusion matrices comparison. Columns represent predictions while rows represent ground-truth.

(a) lexical modality

neg neu pos

neg .607 .140 .253
neu .233 .572 .194
pos .128 .115 .757

(b) acoustic modality

neg neu pos

neg .509 .181 .311
neu .239 .621 .140
pos .198 .164 .638

(c) CBP multimodel

neg neu pos

neg .705 .144 .151
neu .247 .648 .104
pos .148 .128 .724

combination that maximizes the validation performance for each
fold. We use an initial learning rate of 0.001. Starting from epoch
five, we reduce the learning rate by half whenever the validation
UAR does not improve at the end of each epoch.

5.2 Results

Table 2 shows the results for the different pooling strategies that
we considered. The results show that the lexical modality yields sig-
nificantly (p < 0.05) better performance than the acoustic modality
does in terms of both UAR and ρ. This suggests that lexical cues are
better for predicting valence than acoustic cues. The results show
thatmultimodal systems significantly (p < 0.05) outperform the uni-
modal lexical systems, suggesting that adding the acoustic modality
can still be beneficial. Pooling through element-wise multiplica-
tion provided a non-significant improvement in performance over
element-wise summation and concatenation approaches. Outer-
product methods provided significant improvement (p < 0.05) in ρ

when compared to results from concatenation method. Finally, our
results suggest that a CBP strategy does not provide an advantage
over simple outer-product strategy. This is probably due to the
relatively low dimensionality of our multimodal representations
required for each modality (32 − 64 for each modality).

Table 3 shows the confusion matrices obtained from the two
unimodal systems and the CBPmodel. The results in Table 3 suggest
that the acoustic modality is better for predicting neutral valence
than the lexical modality. On the other hand, our results suggest
that the lexical modality is better for predicting positive/negative
valence than the acoustic modality. Finally, Table 3 shows that
the significantly improved performance of CBP over that of the
unimodal systems is due to more accurate negative and neutral
valence predictions.

5.3 Analysis

The model that we use in this work abstracts the influence of in-
dividual modalities on the final decision. To further analyze the
influence of each modality on the overall performance of our mul-
timodal system, we study the effect of perturbing the individual
input streams by adding white Gaussian noise (with zero mean
and varying standard deviation) to the input features with different
signal-to-noise-ratio (SNR) levels. We run this analysis on our best
performing system, the CBP multimodal system, and vary the SNR
levels from -18 dB to 6 dB. We also include SNR values of -Inf dB
and +Inf dB in our analysis. The idea is that if an input modality
is less important, then perturbing its values with noise will have
minimal effect on the overall performance.
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Figure 2: Effect of adding noise to eachmodality (while keep-

ing the other modality clean) on the performance of CBP

multimodal system.

Figure 2 shows the results that we obtain for this analysis. The
figure shows that adding more noise to the lexical modality (dashed
line) results in a rapid drop in performance compared to the per-
formance drop due to adding noise to the acoustic modality (solid
line). This suggests that the lexical modality has larger influence
on the overall performance of the system. The figure shows that
a multimodal system would still result in > 60% UAR even when
SNR is zero for the acoustic modality.

6 CONCLUSION

There are several strategies that can be used to pool representations
learned for acoustic and lexical modalities in neural networks. In
this paper, we presented a comparison between different multi-
modal feature pooling strategies for the task of predicting valence
in emotional speech. Our results on the IEMOCAP dataset suggest
the following: (1) multimodal methods that combine acoustic and
lexical features are better than unimodal for predicting valence; (2)
lexical modality is better for predicting valence than the acoustic
modality; (3) outer-product-based pooling strategies outperform
other pooling techniques.

For future work, we plan to study pooling strategies that can be
applied to temporal signals directly before inducing fixed-length
representations. Such strategies should allow modeling temporal
dependencies between the two signals.
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