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Abstract

This paper proposes an innovative spectral modeling approach based on Gaussian conditional random field (GCRF) theory. The proposed
method is also incorporated in a statistical parametric speech synthesis (SPSS) framework. Conventionally, SPSS systems exploit hidden
Markov model (HMM)-based spectral modeling technique which suffers from a trivial problem known as state independence assumption.
This shortcoming refers to the fact that the distributions of adjacent frames are modeled independently in HMM, whilst they are highly
dependent and correlated. The proposed model assumes that spectral trajectories form a left-to-right linear-chain conditional random field
(CRF) with Gaussian potential functions. Therefore, instead of the inaccurate independence assumption, Markov assumption is established
for adjacent frames in a latent state. In order to train the proposed GCRF model a Viterbi algorithm along with a maximum likelihood
(ML)-based parameter estimation procedure have been applied. The estimation algorithm leads to an optimization problem which is solved
numerically through the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. In synthesis phase, an efficient parameter generation
algorithm optimizing output probability measure has been derived. The designed parameter generation algorithm has the ability to exploit
dynamic features as well as static features. Two sets of experiments are reported to prove the effectiveness of the proposed GCRF. In the first
set, GCRF with some heuristic context clusters and ML-based parameter estimation is evaluated in contrast to the predominant HMM-based
method. The results of objective and subjective tests confirm that the proposed system using heuristic contextual clusters outperformed the
standard HMM in small training databases (i.e. 50, 100 and 200 sentences), but in large datasets HMM performs better. It is mainly due to
the inability of the proposed system to adjust the number of model parameters with the size of training database. In the second set of
experiments, the performance of GCRF using decision tree-based clusters is investigated. This later model has the ability to change the
model complexity according to the size of training database. All evaluation results of this experiment confirm significant improvement of the
proposed system over the conventional HMM.

Keywords: Gaussian Conditional Random Field, GCRF, Hidden Markov Model, HMM, HMM-Based Speech Synthesis, Spectral
Modeling, State Independence Assumption, Statistical Parametric Speech Synthesis.

1. Introduction Among all synthesis systems designed for TTS
application, statistical parametric speech synthesis (SPSS)
has emerged as the most common method during the last
decade [1-3]. Overall architecture of a typical SPSS is shown
in figure 1. According to this figure, an SPSS system
comprises two distinct phases: training and synthesis.
Training phase starts with the extraction of acoustic features
and contextual factors for all utterances in the training
database. Acoustic features, including spectral, excitation
and duration parameters, are extracted by a speech vocoder
(e.g. MELP [4], STRAIGHT [5], DSM [6, 7] and HNM [8]).

The automatic conversion of written text to speech waveform
is commonly called text-to-speech (TTS). TTS systems are
generally composed of two main subsystems. The first one
converts input text into several language specifications called
contextual factors and the second subsystem is known as
speech synthesis which uses the contextual factors to
generate a synthesized waveform [1-3]. This paper
introduces a new speech synthesis system.
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Thereafter, the relationship between extracted acoustic
features and contextual factors are captured through context-
dependent statistical models [2]. In the synthesis phase,
contextual factors are first obtained for a given text using the
same natural language processor applied in the training
phase. Next, a parameter generation (PG) algorithm [9-12]
is applied to generate acoustic trajectories. Acoustic
parameters are then fed into the same vocoder used during
the training phase in order to generate synthesized speech.
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Figure 1. Block diagram of a typical SPSS

Statistical representation of speech in SPSS causes
several advantages including high flexibility to modify voice
characteristics [13], capability to exploit all speech
recognition techniques (e.g. adaptation methods) [14, 15],
proper support of multilingual synthesizers [16-18],
improved robustness [19], improved coverage of acoustic
space, low memory requirement [2]. However, all mentioned
advantages are achieved at the expense of one important
disadvantage, i.e. reduced quality of synthesized speech [2].
One major reason of this problem is the inefficiency of
statistical models. This paper is an attempt to improve the
performance of the predominant HMM-based statistical
modeling method.

Multi-stream Left-to-right without skip transitions hidden
semi-Markov model (HSMM) [20] applying multi-space
probability distribution (MSD) [21] has emerged as the most
common method for statistical modeling during the last
decade. For the sake of simplicity, this predominant model is
simply called HMM in this paper. The focus in this article is
hereby on improving the performance of conventional
HMM-based modeling [22] by introducing an accurate
statistical modeling approach. The improvement is achieved
by releasing one inaccurate assumption of HMM-based
modeling, namely state independence assumption. In fact,
HMM assumes that the output probability distributions of
successive frames are independent of each other. This
assumption causes HMM to generate piece-wise constant
trajectories which are not similar to natural trajectories. In
the next section, we will briefly review related works.

1.1. Related Work

To overcome the unfavorable effects caused by state
independence assumption of the standard HMM, a variety of
sophisticated models have been proposed. These models
includle HMMs with polynomial regression functions [23-
25], hidden dynamic models [26-29], partly hidden Markov
models [30], stochastic segment models [31], segmental
HMMs [32-34], temporally varying means and precisions
[35, 36], frame-correlated HMMs [37-41], buried Markov

models [42], switching linear dynamical systems [43, 44],
dynamic Bayesian networks [45] and etc. All the above-
mentioned methods have been designed for speech
recognition application.

However, a smaller number of methods, that improve
predominant HMM, have been proposed in the speech
synthesis field of research. One of the first techniques is
based on trajectory HMM [46, 47] which reformulates the
HMM by imposing explicit relationships between static and
dynamic acoustic features. Trajectory HMM removes the
incorrect conditional independence assumption of state
output probabilities in HMM structure, at the expense of
intensive training procedure. This system is then
outperformed by integrating the global variance (GV)
constraint into its training procedure [48]. Autoregressive
HMM [49, 50] is another modeling method that is able to
eliminate the mentioned independence assumption with a
much more computationally tractable parameter estimation
algorithm. Gaussian process regression (GPR) [51] is
another new technique that releases the incorrect stationarity
assumption of the state output distribution in HMM. GPR
uses frame-level contextual factors to predict frame-level
acoustic trajectories. These frame-level factors are then used
as the explanatory variable in a GPR framework.

The fact that classical HMM expresses each frame
distribution independent of its adjacent frames leads to an
insufficient context generalization as well; because HMM
cannot capture cross-correlation between adjacent frames.
Also, HMM-based speech synthesis exploits a decision tree-
based clustering method to capture the dependencies between
acoustic features and contextual factors [52]. This decision
tree clustered structure is another reason for inadequate
generalization to unseen models [53]. Many efforts have in
turn devoted to improve the generalization capabilities of
HMM. One of the most notable works is developed based on
deep neural networks (DNNSs) [53]. DNNs are able to predict
difficult context dependencies by applying plenty of hidden
layers, as opposed to the decision tree structure that is not
efficient enough to predict complex dependencies such as
XORs or multiplexers [53]. Other deep learning approaches
such as restricted Boltzmann machines (RBMs) [54] and
deep belief networks (DBNs) [55] have also been
demonstrated to be effective in SPSS. Some other methods
also offer superior generalization by replacing the non-
overlapped clusters of decision tree with a number of
overlapped regions. These methods include contextual
additive model [56-58], in which acoustic trajectories are
assumed to be a superposition of multiple additive
components with different decision trees, and hidden
maximum entropy model (HMEM) [59] which estimates the
smoothest distribution preserving statistics of the overlapped
clusters.

1.2. Scope of the Paper

As previously stated, classical HMM-based speech synthesis
employs a decision tree clustered left-to-right without skip
hidden semi-Markov model [20] in the statistical modeling
phase. Roughly speaking, this model initially partitions
acoustic trajectories into a fixed number of time slices (so-
called states) and then the distribution of each state is simply
expressed using a context-dependent [60] multi-space
probability distribution [21]. This rough explanation shows
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that the distributions of successive frames in predominant
HMM are modeled independently and the correlations
between adjacent frames are completely forgotten. Therefore,
HMM is unable to exploit the statistics of training data
efficiently, and it suffers from inadequate generalization. In
other words, HMM is only able to capture statistics of one
individual frame; while, it is possible to design a model
capturing mutual statistics of adjacent frames. This paper
presents a new modeling method which is designed based on
a Gaussian conditional random field (GCRF). GCRF is a
random field with Markovian property that defines Gaussian
potential functions. As it will be described later, GCRF is
able to model the dependencies of adjacent frames by
defining its potential functions as functions of two
succeeding frames.

The rest of the paper is organized as follows. In Section
2, the fundamental theory of GCRF is discussed. Section 3
introduces a context-dependent acoustic modeling method
using GCRF. The proposed acoustic modeling is then
incorporated into a SPSS system in Section 4. Experimental
results are presented in Section 5 and final remarks are given
in Section 6.

2. Gaussian Conditional Random Field

In order to introduce GCRF-based speech synthesis, first a
brief description of Markov random field (MRF) and
conditional random field (CRF) is given in this section. The
definitions presented in this section are minimum
prerequisites for our future discussion.

MREF definition: Let G = (V, E) be an undirected graph with
node set V and edge set E, X = (X;)yev be a set of random
variables indexed by nodes of G, X is modeled by MRF if
and only if VA,B €V, P(X,|Xg) = P(X4|Xs), where S is a
border subset of A such that every path from a node in Ato a
node in B passes through S [61].

CRF definition: (X,C) is a CRF iff for any given set of
random variables C, X forms an MRF [61, 62].

In the speech synthesis framework, given an utterance
contextual information C, acoustic features of an arbitrary
hidden state can be assumed to be conditionally independent
of all other features given its adjacent frames; therefore, CRF
seems to be a promising structure for modeling the random
field formed by acoustic trajectories.

Hammersley-Cliffort’s Theorem: Suppose (x,c) is an
arbitrary realization of a CRF (X,C) defined based on a
graph G with positive probability, then P(x|c) can be
factorized by the following Gibbs distribution [61].

1

P(x|c) = 7S

Hc/llPa(XJ C)3 (1)

where A denotes a set of all maximal cliques of G. It should
be noted that clique is a group of nodes that all of them are
mutually connected and maximal clique is a clique that
cannot be extended by including even one adjacent node.
Also, Z(c) is called partition function which ensures that the
distribution sums to one. In other words,

Z(0) = [ TTa¥a.(x0). )

The theorem also states that for any choice of positive local
functions {¥,(x)} (called potential functions) a valid CRF is
generated. One of the simplest choices of a potential function
is Gaussian function.

GCREF definition: CRF with Gaussian potential function is
named GCREF.

CRF model has widely been used in variety of speech and
signal processing applications such as speech recognition
[63-65], speaker verification [66] and gesture recognition
[67]. In all of these applications, the distribution of multiple
discrete class labels given speech signal is modeled through
GCRF framework, while in the application of speech
synthesis the distribution of continues speech parameter
trajectories given some contextual factors has to be modeled;
therefore our final model is completely different from
previous CRF modeling schemes.

3. GCRF-Based Spectral Modeling

Speech spectrum envelope is normally parameterized
through a number of spectral features, such as linear
prediction coefficients (LPCs) and mel-cepstral (mcep)
[68, 69] coefficients. To model these coefficients, standard
HMM imposes a quasi-stationary assumption on the spectral
trajectories. These trajectories are hereby split into a fixed
number of time intervals (so-called states); then independent
and identical distributions are trained for state output
distribution. Although this quasi-stationary assumption might
be valid in some cases (e.g. where signals are recorded in
extremely controlled situations), it is not generally satisfied,
because spectral parameters are by nature non stationary. As
a consequence, HMM is clearly unable to represent intra-
state time-dependencies. This study assumes that intra-state
time-dependencies of spectral parameters follow the
Markovian property and spectral trajectories form an MRF.
Based on this assumption a new distribution is derived in this
section.

3.1. GCREF Graphical Structure

The statistical dependencies of MRF-based graphical models
can be simply shown through a factor graph [61]. Factor
graph is an undirected graph with two types of vertices
representing random variables and potential functions.
Conventionally, circular and square nodes are respectively
used for illustrating random variables and potential
functions. Edges of the factor graph are just allowed to
connect a potential function with a random variable and it
means that the potential function requires the random
variable as an input argument. Figure 2 compares the factor
graph of the standard HMM and the proposed GCRF. In this
figure, S; indicates state label of t-th frame and oy, is the [-th
dimension of the acoustic feature extracted for frame t. Also,
P, and W, are defined as the potential functions of HMM
and GCRF associated with [-th dimension in time t. As it is
realized from this figure, various dimensions are modeled
independently in both HMM and GCRF. Additionally,
potential functions of HMM depend only on the current
feature; while, in GCRF potential functions are assumed to
be functions of both current and previous frames. Therefore,
GCRF unlike HMM is able to capture the dynamics of
acoustic trajectories.
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Spectral
features

Let us first explore the distribution of HMM by
considering the graphical model of figure 2 (a). The
following equation expresses the relationship commonly
used for HMM potential function:

(olt_P-[(St))T(olt_H[(St))

P(0ylspA) & expi— 20.2(s)

3

This potential function is slightly different for multi-
mixture or multi-space output probability distribution HMM,
but we confine our discussion to a context-dependent HMM
with just one mixture and one space; because it has been
proved that for spectral modeling, increasing the number of
mixtures or spaces has no tangible effect on the quality of
synthesized speech.

To obtain the final distribution of HMM, A, Eq. (3) has to
be replaced with the potential function of Eq. (1). The
replacement leads to the final distribution expressed by Eq.
(4) which is a well-known multivariate Gaussian distribution.

Pumm(ols; 2) = .
(Olt—ul(st)) (Olt—ul(st)) 4)
2012(sy) ’

T L 1
Ht=1 l_[l=1 Gl(st)m exp

In this equations, p,(s;) and 6?(sy) are the [-th dimension

of the context-dependent mean and variance which are
obtained by traversing HMM decision trees as follows:

Hl(st) = Zil=1 fi(St)uil,

2
of (s0) = Xiza fi(soy (5)
. [1ifstate s, € i cluster
fi(st) = . :th 5
0 if state s, & i*" cluster

where I is termed the total number of clusters, u; and G}z
represent the [-th dimension of mean and variance trained for
cluster i, and fi(s;) is the indicator function of the i-th
cluster. Note that the duration and excitation modeling
methods of GCRF and HMM are supposed to be the same in
this study; hence, they are not shown in Figure 2.

3.2. GCREF probability distribution

Having described the HMM distribution, the goal of this
subsection is to investigate the probability distribution
factorized by GCRF graphical model. Hammersley-Cliffort’s

State
labels

Spectral
features

(b)
Figure 2. Factor graph of the (a) conventional HMM, (b) proposed GCRF

theorem implies the following equality for the graphical
model shown in Figure 2 (b).

1 -
Pocrr(0]s;A) = —TTi=4 [Tz Y@ 56 M), (6)
Z(s;h)

where A is the set of all GCRF parameters and 6y, is a two-

dimensional vector defined as 0, = [Ol(t—l)' olt]T. All other
employed notations were described in previous sections. In
accordance with the Gaussian potential function of HMM,
this paper assumes that the GCRF partition function,
Yy, is formulated by Eq. (7) which is also a two-dimensional
Gaussian  function  with  parameters H;(s;) and

Uye(Se)-
Wi (B 56 2) & exp{— 2 (s + w506} (7)

The parameters H;; and u; determine mean vector and
covariance matrix of this Gaussian equation as —0.5Hj; uy,
and Hj' respectively. Note that all constant parts of the
Gaussian function (the parts which are independent of
observation features) are intentionally eliminated, since they
have no influence on the final distribution. Moreover, in Eq.
(7), Gaussian function is written in terms of its symmetric
precision matrix Hj; instead of its covariance matrix. It is
mainly due to the fact that the distribution is computed
through multiplying the Gaussian potential functions and
multiplying many Gaussian functions expressed by the
precision matrixes leads to a much simpler equation.

In contrast to the conventional HMM that uses two values
(i.e. mean and variance) to parameterize the distribution of
each state in a certain dimension, GCRF defines a 2-by-2
symmetric precision matrix H; and a 2-dimentional vector
uy for each dimension of a state. It means that the total
number of parameters in GCRF is 2.5 times the number of
HMM parameters.

Similar to HMM, it is also possible to cluster GCRF
states. Suppose H! and ul denote the parameters of i-th
cluster, f;(s,) is the indicator function of i-th cluster and I is
the number of clusters. In this case, the state parameters of
context-dependent GCRF can be expressed by:

Hy(sp) = Z}:l fi(St)Hli,

I i (®)

U (se) = Xi=q fisow,
Note that f;(s;) can also represent an overlapped
contextual cluster. For example it is possible to define
multiple decision trees for f;(s), similar to [56, 58, 59], we
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also can exploit decision trees with multiple questions in
each intermediate node, similar to [57], or define it
heuristically [59].

By considering the potential function expressed by Eq.
(7) and according to the fundamental theorem of
Hammersley and Cliffort the final distribution is given by:

Pocre(0ls; 1) = ——TTk, exp {_ % (o[ Hy(s)o; +

Z(s;h)
©
()70},

where 0; = [0;1,0, ..., 0,77, s = [$1, 5, ..., S7]7, and model
parameters are indicated by an L-by-L band-diagonal
precision matrix H;(s) and an L dimentional vector u,(s).
The parameters H; and u; are calculated as a sum of
overlapping local contributions, H; and wuy, where
successive local contributions are functions of the state at
successive frames. Schematically,

ug (sq)

uiz(s2)

* Herlst) e (10)
() (e

Note that superscript T and subscript T denote the
transpose matrix operation and the total number of frames,
respectively. Also, Z is the partition function that can be
calculated through the integral of Eq. (2). Selecting the
potential functions of Eq. (7) makes it possible to find a
closed formula for the partition function as:

Hy1(s1)

[ } 12(52)
[ Tﬂm(-\'a)

] (7

2(s5i%) = (2m)+ [Ty (et(H7 ) exp (Juf ). (1)

In sum, GCRF handles different dimensions of
observation vectors independently. Each observation is
simply expressed by a multivariate Gaussian distribution.
The mean vector and covariance matrix of the [-th dimension
are defined as —0.5H; *u; and Hj!; where, H; and u; are
calculated as a sum of multiple overlapping local
contributions as it is shown in Eq. (10).

In order to have a more clear and straightforward
equations, this paper just covered a simple GCRF capturing
the dependencies of two adjacent frames, while in general
GCREF is also able to model longer time-dependencies (e.g.
the dependencies of three successive frames). To this end, we
need to define a parameter ] as a depth or order of
GCREF.

Then each potential function becomes a function of ]
successive frames. More precisely, 0; in Eq. (6) has to be

defined as 6, = [ol(t_lﬂ), e Oy (t=1)s olt]T. Final distribution
of this GCRF with order ] is equal to the Eq. (10) in which
the Gaussian parameters H;(s) and u;(s) have to be
computed as an overlapped summation of many ]-by-J
matrixes and ]J-dimentional vectors.

An interesting point is that conventional HMM can be
considered as a first order GCRF that uses decision
tree-based context clusters.

4. GCRF Based Speech Synthesis

Overall architecture of the proposed GCRF-based speech
synthesis system is shown in figure 3. Due to the use of
GCREF, statistical modeling and parameter generation
algorithm are different from classical HMM-based synthesis.
Also, Viterbi-type training is selected instead of the
expectation maximization (EM) approach to handle unknown
state  indexes. Viterbi-type training requires less
computational resources in contrast to EM; thus, it is a better
selection for the computationally expensive training
procedure of GCRF.

Model training is performed through two successive
steps. In the first step, spectral features are trained using a
GCRF-based modeling scheme. Other features including
excitation and duration are modeled in the second step
exploiting context-dependent HMM structure. However,
parameter estimation in both GCRF and HMM requires state
occupation probabilities or at least state boundaries to handle
the nonstationarity of speech trajectories. Only spectral
features are involved in determining these state boundaries.
To find an efficient set of state boundaries, first, an initial set
of boundaries is borrowed from a classical HMM trained on
spectral features. Next, these initial boundaries are
contributed to parameter estimation of GCRF.

Trained GCRF is then employed to update state
boundaries. After each GCRF estimation or Viterbi
decoding, likelihood measure computed for spectral
parameters is increased. This procedure is repeated until this
increase falls below a threshold. Final state boundaries are
fed into the HMM-based excitation and duration modeling
module. It should be noted that Viterbi decoding is
performed completely according to the conditional random
field (CRF) Viterbi [61]. Three important blocks in the
architecture, including parameter generation algorithm,
GCRF modeling and Viterbi state decoding are described in
the following subsections.

Speech
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. features Spectral
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Figure 3. Block diagram of the proposed GCRF-based
system
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4.1. GCRF Parameter Generation Algorithm

As described before, state duration and excitation
parameters are modeled using HMM-based modeling;
therefore, these parameters are generated in accordance with
standard parameter generation algorithms [9, 10].

This subsection, for a given GCRF-based spectral model,
derives an algorithm to estimate the best spectral parameters
(©) by optimizing the log-likelihood criteria, i.e.

¢ = argmax, L(c,s; M), (12)

where c represents the static spectral trajectory and £ denotes
the log-likelihood measure that is computed by
taking the logarithm of GCRF distribution given in Eq. (9)
as:

Lc,s;0) =Yk, —%(OITHl(s)ol +u,(s)To)) —

3
log Z(s; \). (3)

This log-likelihood function can also be arranged in a
unique matrix form:

L(c,s;A) = —%(OTH(S)O +u(s)To) —logZ(s; M),

o=[ol,0],..,0']", u(s) =
[ul(s)T’ u2 (S)TJ LA uL(S)T]T,
(14)
H, (s) 0 0
ne=| 0 e 0
0 0 H (s)

where o contains all observation features; all u parameters
are arranged in an L X T dimensional vector, and H
is an (LxXT)-by-(LXT) band diagonal precision
matrix.

In order to generate the optimum spectral features €, log-
likelihood function has to be written in terms of static
features c. In addition, observation vector o, in most cases
[9], is assumed to be a linearly transformed version of c, i.e.

OLtx1 = WLrx(LT/3)C(LT/3)x15 (15)

where ¢ = [T, c], ...,cf/3]T, and ¢; = [c;1, Cpzr b C7) -

According to the above equations, the final parameter
generation algorithm is achieved by solving the following
unconstraint optimization problem:

¢ = argmin, (cCTWTH(s)Wc + u(s)TWc). (16)
The result is obtained by computing the partial

derivatives of Eq. (16) with respect to c and setting it to zero.
This procedure results in the following system of equations:

(WTH(s)W)e = —%WTu(s), (17)
which can be solved efficiently wusing Cholesky

decomposition, since WTH(s)W is symmetric and positive
definite.

4.2. GCRF Parameter Estimation

This section discusses the training procedure of model
parameters A. In model training, we are given a set of N iid
training sentences {O", S"}N_,, and the goal is to estimate the
best set of parameters, i, which maximizes the following log-
likelihood measure:

A = argming Ly, (L),

L) = 2y Bk {5 (01 H (Mo} + (18)
u;(s™7o!) — log Z(s“;k)}.

Therefore, the maximum likelihood (ML) criterion is
optimized during the training procedure. Model likelihood is
denoted by Ly, and n is an index defined for the utterance
number. Replacing Z(s; L) with Eq. (11) gives:

L) = Xh=1 Z%:l _%{O?THI(SH)O? +
u;(s™7of — logdet(H,(s™)) + (19)
Su M TH M (sM}

As it is described in Eq. (8), GCRF model parameters A
include a set of 2-by-2 matrixes H! and a set of
2-dimensional vectors ul that are defined for every
dimension 1 <! < L and every decision tree cluster 1 < i <
I. Therefore, our goal is to find the best values for all H} and
ul. To achieve this goal, partial derivatives of Ly, with
respect to these parameters has to be computed and then by
setting them to zero the optimum parameters will be
estimated.

Partial derivatives are given by Eq. (20).

OIML _ v _1p nyT |2 ny-1 n n

k= T~ G [FHGM ™) + of |

BLML — VN _lF_(Sn)T [ononT —H (Sn)—l _ (20)
0H; n=1 21 LYl l

SHG™M Ty (5w (MTH, (M) 7 Fis™.

F is a 2-by-T™ binary matrix defined as:

Fi(Sn) — 6ul(§n)

ou; 21)
[0 D EGDH - filsm)] (
TG fi(s5)  fiGsH) f,(s™n)

where T" denotes the total number of frames in the n-th
utterance, and f;(sP") determines whether the t-th frame of
utterance n belongs to the cluster i or not. f;(sf') is defined
precisely in Eq. (5).

Setting all partial derivatives of Eq. (20) to zero, leads to
a system of equations that has not a solution in closed
formula and has to be solved iteratively. This paper proposes
applying the well-known and efficient Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [70] in order to solve
the above system of equations.

BFGS needs the first partial derivatives of the likelihood
function given by Eq. (20).
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4.3. GCREF Viterbi Algorithm

In this section, we will briefly explain the Viterbi algorithm
employed to determine state boundaries in GCRF. Viterbi is
a dynamic programming algorithm for finding the most
probable sequence of hidden states (Viterbi path). Given an
observation vector o, our goal is to find § such that:

P(o,s;M)

§ = argmax,P(s|o; 1) = argmax, L ===,

(22)

where P(o0; A) is independent of state sequence s and can be
eliminated from maximization problem; therefore,

§ = argmaxP(s|o;\) = argmaxP(o,s;}). (23)

According to the architecture given in figure 3, state
boundaries are determined by considering spectral features;
thus, in equations (22) and (23), o represents the spectral
features and other features are not incorporated in that.
Moreover, based on the prime assumption of this paper,
ordered pair of (o,s) forms an MRF. The distribution of this
MREF is factorized by Eq. (6); therefore, P(o,s;)) can be
written as:

P(o,5;2) = 7 Ty [Ty Wit (e 565 ). (24)

where the partition function, Z, is independent of both o and
s, and is calculated through Eq. (2). Replacing P(o, s; A) with
Eq. (24) and eliminating the constant value Z, leads to

§ = argmax; Hrtr=1 H%=1 ¥ (010, 56 M. (25)

For the sake of clarity in next equations, we also define
another potential function ¢, by multiplying ¥}, over all
dimensions,

de(0,550) = H{“=1 ¥ (01, St M) (26)

This new potential function simplifies our problem as:

§ = argmax, [T{=; (0,56 1). (27)

Now, suppose the given utterance is made up of ]
successive states. For example, if we design a five-state
GCRF for each phoneme, this ] will be calculated by
multiplying the number of phonemes by five. Also, assume
the last frame of j-th state is denoted by 7j and 7, = 1. Then
the optimization problem can be rewritten as the following
equation:

§ = argmax, ]'[]J=1 :]=r,-_1 $i(0, 56 1). (28)

Similar to HMM Viterbi, in order to break down the
complex problem of state labeling into simpler sub-
problems, we need to define two auxiliary variables &, t*. &
is a function of two variables £ and #, and computes the
maximum value of the above optimization function, when
the number of states is 7 and the utterance has just £ frames.

T

8;(#) = maxe,, ., (I I, delo,560)) X

29
H€=r,_1 (0,56 M). (29)

This auxiliary variable can be simply computed through
the following recursion:

5;() = max 85-1(tjm1) X ITize,_, de(0,561). (30)

Other auxiliary variable 7; (%) stores the frame index that
maximizes the above equation. In other words,

7 (£) = argmax 8;-1(tj-1) X [ier,_, de(0,56 1), (31)

GCRF Viterbi is performed through two steps, namely
forward and backward steps. In the forward step, 6;(¢) and
7;(¢) are computed for all values of 1 <7 <Jand 1<t <
T using the above recursions. Thereafter the backward step
finds the optimum state boundaries. Clearly, the optimum
and only possible value for 7 is the total number of frames,
i.e. T. Thus, this 7; is used for initializing backward step.
Other optimum state boundaries can also be computed
through the following backward iterations:

7 = 141 (T41)- (32)

It should be noted that the auxiliary variable 6;(%) gets
smaller and smaller values by increasing the frame index .
As a result, for long sentences with a great number of states,
the § may become so small that cannot be stored correctly as
a positive value in computers. In this case, the forward and
backward procedure fails and returns an incorrect Viterbi
path. As a solution to this problem, we can optimize the
logarithm of P(s|o;A) in Eq. (23) and derive all the above
equations for this new objective function.

5. Experiments

This section aims to evaluate GCRF-based acoustic modeling
in contrast to the classical HMM-based method. To achieve
this goal, we have conducted two sets of evaluations. The
first one examines the performance of GCRF with some
heuristic and overlapped context clusters. The second
experiment investigates the impact of decision tree-based
context clusters on the quality of GCRF spectral modeling.
The results of these two sets of experiments are presented in
subsections 5.3 and 5.4. Also, the next subsection provides
the details of experimental conditions.

5.1. Experimental Conditions

Experiments were wholly conducted on a standard Persian
speech database designed originally for single-speaker
speech synthesis application [59]. This database is prepared
completely in accordance with the CMU Arctic speech
databases [71] and has been carefully recorded under studio
conditions. It consists of approximately 1000 phonetically
balanced Persian utterances with an average duration of eight
seconds for each utterance. Furthermore, it covers most
frequent Persian words, most frequent syllables, all bi-letters,
and all possible bi-phones combinations. The recorded
waveforms are packaged with contextual information
required for building a single-speaker speech synthesis. The
contextual information includes phoneme labels and
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boundaries, syllable and word boundaries, part-of-speech
(POS) and “Ezafe”' tags, ToBI accentual and intonational
phrase information, and the stress level of all syllables. More
than 64 segmental and suprasegmental contextual factors are
extracted for this database.

All speech signals are sampled at 16 kHz sampling rate,
windowed by a 25-ms Blackman window with 5-ms shift.
Spectral and excitation features were extracted by
STRAIGHT vocoder [5]. These acoustic features include 25
mel-cepstral coefficients [68, 69], five band pass aperiodicity
parameters [72] related to five sub-bands (0-1, 1-2, 2-4, 4-6,
and 6-8 kHz), and a fundamental frequency. Above features
along with their derivatives were used as the speech
parameters in implemented systems.

A S-state multi-stream single-mixture left-to-right with
no skip path HMM was trained as the baseline system using
the publicly available HTS toolkit [73]. To handle undefined
FO values in unvoiced frames, FO stream was modeled by a
multi-space probability distribution [20]. Also, state duration
probabilities are explicitly represented by a Gaussian
distribution using hidden semi-Markov modeling framework
[21]. Prevalent maximum likelihood-based decision tree
construction algorithm used to tie HMM states, and MDL
criterion was used to determine the size of the decision trees.
Similar to [49], MDL tuning factor was set to be 1/3 for all
decision trees. Additionally, the first algorithm proposed in
[9] which maximizes output probability was adopted to
generate parameters from trained models.

During HMM training for the baseline synthesis system,
the stream weight for the aperiodicity was set to zero. Thus,
the forward-backward procedure depended only on the
spectral and FO features. In other words, model parameters of
aperiodicity components were trained in the normal way, but
they do not contribute to the calculation of forward and
backward variables.

Experiments were conducted on 4 different training sets
with 50, 100, 200, and 400 utterances. Additionally, a fixed
set of 200 utterances, not included in the training sets, was
used for testing.

5.2. Employed Contextual Factors

In our experiments, contextual factors contained several
levels, including phonetic, syllable, word, phrase and
sentence level factors. In each of these levels both general
and detailed factors were taken into account. Features such as
phoneme identity, syllable stress pattern or word part of
speech tag are examples of general features and a question
like the position of the current phoneme is a sample of
detailed one. Specific information with regard to contextual
features is presented in this subsection.

» Phonetic-level features
v Phoneme identity of the two preceding, preceding,
current, succeeding, and two succeeding phoneme.
v' Position of the current phoneme in the current syllable
(forward and backward).
v" Whether this phoneme is “Ezafe” or not.

» Syllable-level features
v’ Stress level of this syllable (5 different stress levels
are defined for our speech database).
v' Position of the current syllable in the current word
and phrase (forward and backward).

v' Type of the current syllable (syllables in Persian
language are structured as CV, CVC, or CVCC, where C
and V denote consonants and vowels, respectively).

v" Number of the stressed syllables before and after the
current syllable in the current phrase.

v' Number of syllables from the previous stressed
syllable to the current syllable.

v Vowel identity of the current syllable.

» Word-level features
v' Part of speech (POS) tag of the preceding, current and
succeeding word.
v' Position of the current word in the current sentence
(forward and backward).
v" Whether the current word contains “Ezafe” or not.
v" Whether this word is the last word in the sentence or
not.

» Phrase-level features
v Number of syllables in the preceding, current, and
succeeding phrase.
v’ Position of the current phrase in the current sentence
(forward and backward).

> Sentence-level features
v" Number of syllables, words, and phrases in the
current sentence.
v Type of the current sentence.

5.3. Evaluation Results of GCRF with Heuristic
Contextual Regions

In this experiment, a synthesis system named GCRF1 was
developed based on the proposed approach. This system
adopted 150 highly overlapped contextual regions that were
designed carefully. The indicator functions f;(s) in equations
(20) and (22) were defined based on these 150 contextual
regions. To define the indicator functions, first, a set of 64
initial contextual factors were extracted for each segment
(phoneme) of the Persian database. Some of these initial
factors are mentioned in the previous subsection. Then, from
these contextual factors, a set of approximately 8000
contextual questions were designed and the baseline HMM-
based system was trained using them. Each question can
form two regions; therefore, these 8000 questions can be
converted to 16000 regions. For each stream of GCRF1 a set
including 150 contextual regions that seem to be more
important for that stream were selected and GCRF1 was
trained using them. Regions of GCRF1 were selected based
on the linguistic knowledge of Persian language.

Both subjective and objective tests have been conducted
to assess the performance of the proposed GCRF-based
spectral modeling in contrast to the conventional HMM-
based method. As a relevant objective measure, average mel-
cepstral distortion (MCD) [74, 75] between generated and
natural spectral trajectories was calculated. This MCD
measure between two corresponding mel-cepstral vectors is
defined by the following equation:

10 [232, (met - meP)”. (33)

MCD = In(10) i

Where mc} and mcip are respectively termed target and
predicted i-th mel-cepstral component.
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Figure 4. evaluation results comparing GCRF1 with HMM
using (a) MCD measure (b) preference score.

For calculating the average mel-cepstral distance, the
length of natural and generated trajectories has to be exactly
the same. In order to equalize the length of generated and
natural trajectories, we first conducted a Viterbi algorithm to
obtain the most likely state durations of the natural
trajectories and then GCRF trajectories were generated in
accordance with the obtained durations.

We also employed preference score measure [76] to
compare the proposed and HMM-based systems subjectively.
20 subjects were presented with 10 randomly chosen pairs of
synthesized speech from the two models and then asked for
their preference.

Figures 4 (a) and 4 (b) show the results of objective and
subjective evaluations. Remarkably, the GCRF1 system is
noticed to be of a great interest when the training data is
limited. The superiority of GCRF1 over HMM is clear in the
training sets containing 50 and 100 utterances. Gradually, as
the number of utterances in the training set increases, HMM
surpasses GCRF1. It is mainly because GCRF with some
heuristic contextual regions is unable to balance the model
complexity with the size of training data. In other words, for
larger databases, it is expected to have a model with larger
number of parameters, but GCRF1 applies the same number
of parameters for all databases. Therefore, we need to think
about a procedure that balances the GCRF model complexity
against the size of training data. Next section gives a naive
idea to overcome this issue.

5.4. Evaluation Results of GCRF with Decision
Tree-Based Contextual Clusters

A fundamental solution to the problem of aligning model
complexity with the amount of training data is to conduct
clustering methods such as decision tree construction
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Figure 5. the results of objective and subjective tests
evaluating the performance of GCRF2 in contrast to the
HMM. (a) MCD measure result, (b) preference score test.

algorithms over GCRF states. However, clustering GCRF
states using an optimum structure (e.g. maximum likelihood
clustering [60]) leads to an extremely complicated procedure
which is computationally impossible to implement.
Therefore, this section proposes borrowing the decision tree-
based clusters of conventional HMM. GCRF using HMM
contextual clusters is named GCRF2 in this subsection.

Both objective and subjective tests were conducted in this
subsection as well. MCD measure and preference score are
selected for the objective and subjective evaluations. For the
preference score, 10 native participants were asked to listen
to 30 randomly chosen pairs of synthesized speech samples
generated by two different systems (HMM and GCRF2).
Figures 5 (a) and 5 (b) show the results of objective and
subjective tests. As it can be seen in the figures, both
objective and subjective tests confirm the superiority of the
proposed method over the conventional HMM in all
databases.

6. Conclusion

The goal of this paper is to address the important problem of
state independence assumption in HMM and propose a new
spectral modeling approach that relaxes this inaccurate
assumption using the capabilities of Gaussian conditional
random fields. The proposed GCRF-based spectral modeling
has also been incorporated in a new statistical parametric
speech synthesis system. In the training phase of this new
speech synthesis system, a Viterbi-type framework that
maximizes the likelihood measure has been developed.
Synthesis phase has been performed through a maximum
output probability parameter generation algorithm followed
by a STRAIGHT vocoder. Additionally, two methods have
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been proposed to capture the context dependencies in the
proposed GCRF-based spectral modeling. The first one was
based on some heuristic contextual regions. Conducted
subjective and objective evaluations confirmed that the
heuristic contextual regions are just effective for small
databases. The second method has been designed based on
decision tree-based regions which are noticed to be effective
in all databases. Reported subjective and objective tests
prove the effectiveness of the second method of capturing
contextual dependencies in all databases.

All of the above advantages are achieved at the expense
of extremely high computational complexity parameter
estimation algorithm. Indeed, the proposed BFGS
optimization procedure requires large processing resources
which prevent us to derive and implement an optimum
context clustering technique. Our future works are devoted
to: (i) introduce a more efficient parameter estimation
algorithm requiring less computational resources. (ii)
incorporate the proposed algorithm in an optimum context
clustering technique and express the relationship between
acoustic features and contextual factors directly based on
GCRF modeling scheme.
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! “Ezafe” is a special feature in Persian, normally pronounced as a short
vowel “e” and relates two words together. Ezafe is not written but is
pronounced and has a profound effect on intonation.
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