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Thereafter, the relationship between extracted acoustic 
features and contextual factors are captured through context-
dependent statistical models [2]. In the synthesis phase, 
contextual factors are first obtained for a given text using the 
same natural language processor applied in the training 
phase. Next, a parameter generation (PG) algorithm [9-12] 
is applied to generate acoustic trajectories. Acoustic 
parameters are then fed into the same vocoder used during 
the training phase in order to generate synthesized speech. 
 

 
 

Figure 1. Block diagram of a typical SPSS 
 

Statistical representation of speech in SPSS causes 
several advantages including high flexibility to modify voice 
characteristics [13], capability to exploit all speech 
recognition techniques (e.g. adaptation methods) [14, 15], 
proper support of multilingual synthesizers [16-18], 
improved robustness [19], improved coverage of acoustic 
space, low memory requirement [2]. However, all mentioned 
advantages are achieved at the expense of one important 
disadvantage, i.e. reduced quality of synthesized speech [2]. 
One major reason of this problem is the inefficiency of 
statistical models. This paper is an attempt to improve the 
performance of the predominant HMM-based statistical 
modeling method. 

Multi-stream Left-to-right without skip transitions hidden 
semi-Markov model (HSMM) [20] applying multi-space 
probability distribution (MSD) [21] has emerged as the most 
common method for statistical modeling during the last 
decade. For the sake of simplicity, this predominant model is 
simply called HMM in this paper. The focus in this article is 
hereby on improving the performance of conventional 
HMM-based modeling [22] by introducing an accurate 
statistical modeling approach. The improvement is achieved 
by releasing one inaccurate assumption of HMM-based 
modeling, namely state independence assumption. In fact, 
HMM assumes that the output probability distributions of 
successive frames are independent of each other. This 
assumption causes HMM to generate piece-wise constant 
trajectories which are not similar to natural trajectories. In 
the next section, we will briefly review related works.  
 
1.1.  Related Work 
 
To overcome the unfavorable effects caused by state 
independence assumption of the standard HMM, a variety of 
sophisticated models have been proposed. These models 
include HMMs with polynomial regression functions [23-
25], hidden dynamic models [26-29], partly hidden Markov 
models [30], stochastic segment models [31], segmental 
HMMs [32-34], temporally varying means and precisions 
[35, 36],  frame-correlated HMMs [37-41], buried Markov 

models [42], switching linear dynamical systems [43, 44], 
dynamic Bayesian networks [45] and etc. All the above-
mentioned methods have been designed for speech 
recognition application. 

However, a smaller number of methods, that improve 
predominant HMM, have been proposed in the speech 
synthesis field of research. One of the first techniques is 
based on trajectory HMM [46, 47] which reformulates the 
HMM by imposing explicit relationships between static and 
dynamic acoustic features. Trajectory HMM removes the 
incorrect conditional independence assumption of state 
output probabilities in HMM structure, at the expense of 
intensive training procedure. This system is then 
outperformed by integrating the global variance (GV) 
constraint into its training procedure [48]. Autoregressive 
HMM [49, 50] is another modeling method that is able to 
eliminate the mentioned independence assumption with a 
much more computationally tractable parameter estimation 
algorithm. Gaussian process regression (GPR) [51] is 
another new technique that releases the incorrect stationarity 
assumption of the state output distribution in HMM. GPR 
uses frame-level contextual factors to predict frame-level 
acoustic trajectories. These frame-level factors are then used 
as the explanatory variable in a GPR framework.  

The fact that classical HMM expresses each frame 
distribution independent of its adjacent frames leads to an 
insufficient context generalization as well; because HMM 
cannot capture cross-correlation between adjacent frames. 
Also, HMM-based speech synthesis exploits a decision tree-
based clustering method to capture the dependencies between 
acoustic features and contextual factors [52]. This decision 
tree clustered structure is another reason for inadequate 
generalization to unseen models [53]. Many efforts have in 
turn devoted to improve the generalization capabilities of 
HMM. One of the most notable works is developed based on 
deep neural networks (DNNs) [53]. DNNs are able to predict 
difficult context dependencies by applying plenty of hidden 
layers, as opposed to the decision tree structure that is not 
efficient enough to predict complex dependencies such as 
XORs or multiplexers [53]. Other deep learning approaches 
such as restricted Boltzmann machines (RBMs) [54] and 
deep belief networks (DBNs) [55] have also been 
demonstrated to be effective in SPSS. Some other methods 
also offer superior generalization by replacing the non-
overlapped clusters of decision tree with a number of 
overlapped regions. These methods include contextual 
additive model [56-58], in which acoustic trajectories are 
assumed to be a superposition of multiple additive 
components with different decision trees, and hidden 
maximum entropy model (HMEM) [59] which estimates the 
smoothest distribution preserving statistics of the overlapped 
clusters. 
 

1.2. Scope of the Paper 
 
As previously stated, classical HMM-based speech synthesis 
employs a decision tree clustered left-to-right without skip 
hidden semi-Markov model [20] in the statistical modeling 
phase. Roughly speaking, this model initially partitions 
acoustic trajectories into a fixed number of time slices (so-
called states) and then the distribution of each state is simply 
expressed using a context-dependent [60] multi-space 
probability distribution [21]. This rough explanation shows 
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that the distributions of successive frames in predominant 
HMM are modeled independently and the correlations 
between adjacent frames are completely forgotten. Therefore, 
HMM is unable to exploit the statistics of training data 
efficiently, and it suffers from inadequate generalization. In 
other words, HMM is only able to capture statistics of one 
individual frame; while, it is possible to design a model 
capturing mutual statistics of adjacent frames. This paper 
presents a new modeling method which is designed based on 
a Gaussian conditional random field (GCRF). GCRF is a 
random field with Markovian property that defines Gaussian 
potential functions. As it will be described later, GCRF is 
able to model the dependencies of adjacent frames by 
defining its potential functions as functions of two 
succeeding frames. 

The rest of the paper is organized as follows. In Section 
2, the fundamental theory of GCRF is discussed. Section 3 
introduces a context-dependent acoustic modeling method 
using GCRF. The proposed acoustic modeling is then 
incorporated into a SPSS system in Section 4. Experimental 
results are presented in Section 5 and final remarks are given 
in Section 6. 
 

2. Gaussian Conditional Random Field 
 
In order to introduce GCRF-based speech synthesis, first a 
brief description of Markov random field (MRF) and 
conditional random field (CRF) is given in this section. The 
definitions presented in this section are minimum 
prerequisites for our future discussion. 
MRF definition: Let G ൌ ሺV, Eሻ be an undirected graph with 
node set V and edge set E, X ൌ ሺX୴ሻ୴אV be a set of random 
variables indexed by nodes of G, X is modeled by MRF if 
and only if  ׊A, B ك V, PሺXA|XBሻ ൌ PሺXA|XSሻ, where S is a 
border subset of A such that every path from a node in A to a 
node in B passes through S [61]. 
CRF definition: ሺX, Cሻ  is a CRF iff for any given set of 
random variables C, X forms an MRF [61, 62]. 
In the speech synthesis framework, given an utterance 
contextual information C, acoustic features of an arbitrary 
hidden state can be assumed to be conditionally independent 
of all other features given its adjacent frames; therefore, CRF 
seems to be a promising structure for modeling the random 
field formed by acoustic trajectories.  
Hammersley-Cliffort’s Theorem: Suppose ሺx, cሻ  is an 
arbitrary realization of a CRF ሺX, Cሻ  defined based on a 
graph G  with positive probability, then Pሺx|cሻ  can be 
factorized by the following Gibbs distribution [61]. 
 
Pሺx|cሻ ൌ

ଵ

Zሺୡሻ
∏ Ψࣵሺx, cሻࣛ ,  (1)

 
where ࣛ denotes a set of all maximal cliques of G. It should 
be noted that clique is a group of nodes that all of them are 
mutually connected and maximal clique is a clique that 
cannot be extended by including even one adjacent node. 
Also, Zሺcሻ is called partition function which ensures that the 
distribution sums to one. In other words, 
 

Zሺcሻ ൌ ׭ ∏ Ψࣵሺx, cሻࣛ୶ .  (2)

 

The theorem also states that for any choice of positive local 
functions ሼΨࣵሺxሻሽ (called potential functions) a valid CRF is 
generated. One of the simplest choices of a potential function 
is Gaussian function. 
GCRF definition: CRF with Gaussian potential function is 
named GCRF.  

CRF model has widely been used in variety of speech and 
signal processing applications such as speech recognition 
[63-65], speaker verification [66] and gesture recognition 
[67]. In all of these applications, the distribution of multiple 
discrete class labels given speech signal is modeled through 
GCRF framework, while in the application of speech 
synthesis the distribution of continues speech parameter 
trajectories given some contextual factors has to be modeled; 
therefore our final model is completely different from 
previous CRF modeling schemes. 
 

3. GCRF-Based Spectral Modeling 
 
Speech spectrum envelope is normally parameterized 
through a number of spectral features, such as linear 
prediction coefficients (LPCs) and mel-cepstral (mcep)      
[68, 69] coefficients. To model these coefficients, standard 
HMM imposes a quasi-stationary assumption on the spectral 
trajectories. These trajectories are hereby split into a fixed 
number of time intervals (so-called states); then independent 
and identical distributions are trained for state output 
distribution. Although this quasi-stationary assumption might 
be valid in some cases (e.g. where signals are recorded in 
extremely controlled situations), it is not generally satisfied, 
because spectral parameters are by nature non stationary. As 
a consequence, HMM is clearly unable to represent intra-
state time-dependencies. This study assumes that intra-state 
time-dependencies of spectral parameters follow the 
Markovian property and spectral trajectories form an MRF. 
Based on this assumption a new distribution is derived in this 
section. 
 
3.1. GCRF Graphical Structure 
 
The statistical dependencies of MRF-based graphical models 
can be simply shown through a factor graph [61]. Factor 
graph is an undirected graph with two types of vertices 
representing random variables and potential functions. 
Conventionally, circular and square nodes are respectively 
used for illustrating random variables and potential 
functions. Edges of the factor graph are just allowed to 
connect a potential function with a random variable and it 
means that the potential function requires the random 
variable as an input argument. Figure 2 compares the factor 
graph of the standard HMM and the proposed GCRF. In this 
figure, S୲ indicates state label of t-th frame and o௟୲ is the ݈-th 
dimension of the acoustic feature extracted for frame t. Also, 
P௟୲ and Ψ௟୲ are defined as the potential functions of HMM 
and GCRF associated with ݈-th dimension in time t. As it is 
realized from this figure, various dimensions are modeled 
independently in both HMM and GCRF. Additionally, 
potential functions of HMM depend only on the current 
feature; while, in GCRF potential functions are assumed to 
be functions of both current and previous frames. Therefore, 
GCRF unlike HMM is able to capture the dynamics of 
acoustic trajectories. 
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Let us first explore the distribution of HMM by 
considering the graphical model of figure 2 (a). The 
following equation expresses the relationship commonly 
used for HMM potential function: 
 

P௟୲ሺo௟୲|s୲; λሻ ؝ exp ൝െ
ቀ୭೗౪ିμ೗ሺୱ౪ሻቁ

೅
ቀ୭೗౪ିμ೗ሺୱ౪ሻቁ

ଶσ೗
మሺୱ౪ሻ

ൡ.  (3)

 
This potential function is slightly different for multi-

mixture or multi-space output probability distribution HMM, 
but we confine our discussion to a context-dependent HMM 
with just one mixture and one space; because it has been 
proved that for spectral modeling, increasing the number of 
mixtures or spaces has no tangible effect on the quality of 
synthesized speech. 

To obtain the final distribution of HMM, λ, Eq. (3) has to 
be replaced with the potential function of Eq. (1). The 
replacement leads to the final distribution expressed by Eq. 
(4) which is a well-known multivariate Gaussian distribution. 
 
PHMMሺo|s; λሻ ൌ

∏ ∏ ଵ

σ೗ሺୱ౪ሻ√ଶగ
exp ൝െ

ቀ୭೗౪ିμ೗ሺୱ౪ሻቁ
೅

ቀ୭೗౪ିμ೗ሺୱ౪ሻቁ

ଶσ೗
మሺୱ౪ሻ

ൡL
௟ୀଵ

T
୲ୀଵ .  

(4)

 
In this equations, μ௟

ሺs୲ሻ and σ௟
ଶሺs୲ሻ are the ݈-th dimension 

of the context-dependent mean and variance which are 
obtained by traversing HMM decision trees as follows: 
 
μ௟

ሺs୲ሻ ൌ ∑ f୧ሺs୲ሻμ௟
୧I

୧ୀଵ ,  
 

σ௟
ଶሺs୲ሻ ൌ ∑ f୧ሺs୲ሻσ௟

୧ ଶI
୧ୀଵ , 

 

f୧ሺs୲ሻ ؝ ቊ
1 if state s୲ א i୲୦ cluster
0 if state s୲ ב i୲୦ cluster

, 

(5)

 

where I is termed the total number of clusters, μ௟
୧  and σ௟

୧ ଶ
 

represent the ݈-th dimension of mean and variance trained for 
cluster i, and f୧ሺs୲ሻ is the indicator function of the i-th 
cluster. Note that the duration and excitation modeling 
methods of GCRF and HMM are supposed to be the same in 
this study; hence, they are not shown in Figure 2. 
 
3.2. GCRF probability distribution 
 
Having described the HMM distribution, the goal of this 
subsection is to investigate the probability distribution 
factorized by GCRF graphical model. Hammersley-Cliffort’s 

theorem implies the following equality for the graphical 
model shown in Figure 2 (b). 
 

PGCRFሺo|s; λሻ ൌ
ଵ

Zሺୱ;λሻ
∏ ∏ Ψ௟୲ሺo෤௟୲, s୲; λሻL

௟ୀଵ
T
୲ୀଵ ,  (6)

 
where λ is the set of all GCRF parameters and o෤௟୲ is a two-

dimensional vector defined as o෤௟୲ ൌ ൣo௟ሺ୲ିଵሻ, o௟୲൧
்
. All other 

employed notations were described in previous sections. In 
accordance with the Gaussian potential function of HMM, 
this paper assumes that the GCRF partition function,          
Ψ௟୲, is formulated by Eq. (7) which is also a two-dimensional 
Gaussian function with parameters H௟୲ሺs୲ሻ and             
u௟୲ሺs୲ሻ. 
 

Ψ௟୲ሺo෤௟୲, s୲; λሻ ؝ exp ቄെ
ଵ

ଶ
ሺo෤௟୲

் H௟୲ሺs୲ሻo෤௟୲ ൅ u௟୲ሺs୲ሻ்o෤௟୲ሻቅ. (7)

 
The parameters H௟୲ and u௟୲ determine mean vector and 

covariance matrix of this Gaussian equation as െ0.5H௟୲
ିଵu௟୲ 

and H௟୲
ିଵ respectively. Note that all constant parts of the 

Gaussian function (the parts which are independent of 
observation features) are intentionally eliminated, since they 
have no influence on the final distribution. Moreover, in Eq. 
(7), Gaussian function is written in terms of its symmetric 
precision matrix H௟୲ instead of its covariance matrix. It is 
mainly due to the fact that the distribution is computed 
through multiplying the Gaussian potential functions and 
multiplying many Gaussian functions expressed by the 
precision matrixes leads to a much simpler equation. 

In contrast to the conventional HMM that uses two values 
(i.e. mean and variance) to parameterize the distribution of 
each state in a certain dimension, GCRF defines a 2-by-2 
symmetric precision matrix H௟୲ and a 2-dimentional vector 
u௟୲ for each dimension of a state. It means that the total 
number of parameters in GCRF is 2.5 times the number of 
HMM parameters.  

Similar to HMM, it is also possible to cluster GCRF 
states. Suppose H௟

୧ and u௟
୧  denote the parameters of i-th 

cluster, f୧ሺs୲ሻ is the indicator function of i-th cluster and I is 
the number of clusters. In this case, the state parameters of 
context-dependent GCRF can be expressed by: 
 
H௟୲ሺs୲ሻ ൌ ∑ f୧ሺs୲ሻH௟

୧I
୧ୀଵ ,  

 

u௟୲ሺs୲ሻ ൌ ∑ f୧ሺs୲ሻu௟
୧I

୧ୀଵ , 
(8)

 
Note that f୧ሺs୲ሻ can also represent an overlapped 

contextual cluster. For example it is possible to define 
multiple decision trees for f୧ሺs୲ሻ, similar to [56, 58, 59], we 

  

(a) (b) 
 

Figure 2. Factor graph of the (a) conventional HMM, (b) proposed GCRF 
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4.1. GCRF Parameter Generation Algorithm 
 

As described before, state duration and excitation 
parameters are modeled using HMM-based modeling; 
therefore, these parameters are generated in accordance with 
standard parameter generation algorithms [9, 10].  

This subsection, for a given GCRF-based spectral model, 
derives an algorithm to estimate the best spectral parameters 
(cො) by optimizing the log-likelihood criteria, i.e. 
 
cො ൌ argmaxୡ ࣦሺc, s; λሻ, (12) 
 
where c represents the static spectral trajectory and ࣦ denotes 
the log-likelihood measure that is computed by                 
taking the logarithm of GCRF distribution given in Eq. (9) 
as: 
 

ࣦሺc, s; λሻ ൌ ∑ െ
ଵ

ଶ
ሺo௟

்H௟ሺsሻo௟ ൅ u௟ሺsሻ்o௟ሻ െL
௟ୀଵ

log Zሺs; λሻ. 
(13) 

 
This log-likelihood function can also be arranged in a 

unique matrix form: 
 

ࣦሺc, s; λሻ ൌ െ
ଵ

ଶ
ሺo்Hሺsሻo ൅ uሺsሻ்oሻ െ log Zሺs; λሻ, 

 

o ൌ ሾoଵ
், oଶ

், … , oL
்ሿ், uሺsሻ ൌ

ሾuଵሺݏሻ், uଶሺݏሻ், … , uLሺݏሻ்ሿ், 
 

Hሺsሻ ൌ ൦

Hଵሺsሻ 0
0 Hଶሺsሻ ڮ 0

0
ڭ ڰ ڭ

ڮ    0        0     HLሺsሻ

൪,  

(14) 

 
where o contains all observation features; all u parameters 
are arranged in an L ൈ T dimensional vector, and H              
is an ሺL ൈ Tሻ-by-ሺ L ൈ Tሻ band diagonal precision          
matrix.  

In order to generate the optimum spectral features cො, log-
likelihood function has to be written in terms of static 
features c. In addition, observation vector o, in most cases 
[9], is assumed to be a linearly transformed version of  c, i.e. 
 
oLTൈଵ ൌ WLTൈሺLT/ଷሻcሺLT/ଷሻൈଵ, (15)
 

where c ൌ ൣcଵ
், cଶ

், … , cL/ଷ
் ൧

்
, and c௟ ൌ ሾc௟ଵ, c௟ଶ, … , c௟Tሿ். 

According to the above equations, the final parameter 
generation algorithm is achieved by solving the following 
unconstraint optimization problem: 
 
cො ൌ argminୡ ሺcTW்HሺsሻWc ൅ uሺsሻ்Wcሻ. (16) 
 

The result is obtained by computing the partial 
derivatives of Eq. (16) with respect to c and setting it to zero. 
This procedure results in the following system of equations: 
 
ሺW்HሺsሻWሻcො ൌ െ

ଵ

ଶ
W்uሺsሻ, (17)

 
which can be solved efficiently using Cholesky 
decomposition, since W்HሺsሻW is symmetric and positive 
definite. 
 

4.2. GCRF Parameter Estimation 
 
This section discusses the training procedure of model 
parameters λ. In model training, we are given a set of N iid 
training sentences ሼO୬, S୬ሽ୬ୀଵ

N , and the goal is to estimate the 
best set of parameters, λ෠, which maximizes the following log-
likelihood measure: 
 
λ෠ ൌ argminλࣦMLሺλሻ, 
 

ࣦMLሺλሻ ൌ ∑ ∑ ቄെ
ଵ

ଶ
൫o௟

୬்H௟ሺs୬ሻo௟
୬ ൅L

௟ୀଵ
N
୬ୀଵ

u௟ሺs୬ሻ்o௟
୬൯ െ log Zሺs୬; λሻቅ. 

(18)

 
Therefore, the maximum likelihood (ML) criterion is 

optimized during the training procedure. Model likelihood is 
denoted by ࣦML and n is an index defined for the utterance 
number. Replacing Zሺs; λሻ with Eq. (11) gives: 
 

ࣦMLሺλሻ ൌ ∑ ∑ െ
ଵ

ଶ
ቄo௟

୬்H௟ሺs୬ሻo௟
୬ ൅L

௟ୀଵ
N
୬ୀଵ

u௟ሺs୬ሻ்o௟
୬ െ log det൫H௟ሺs୬ሻ൯ ൅

ଵ

ସ
u௟ሺs୬ሻ்H௟ሺs୬ሻିଵu௟ሺs୬ሻቅ. 

(19)

 
As it is described in Eq. (8), GCRF model parameters λ 

include a set of 2-by-2 matrixes H௟
୧ and a set of                

2-dimensional vectors u௟
୧  that are defined for every 

dimension 1 ൑ ݈ ൑ L and every decision tree cluster 1 ൑ ݅ ൑
I. Therefore, our goal is to find the best values for all H௟

୧ and 
u௟

୧ . To achieve this goal, partial derivatives of ࣦML with 
respect to these parameters has to be computed and then by 
setting them to zero the optimum parameters will be 
estimated.  

Partial derivatives are given by Eq. (20). 
 
பࣦML

ப୳೗
౟ ൌ ∑ െ

ଵ

ଶ
F୧ሺs୬ሻ் ቂ

ଵ

ଶ
H௟ሺs୬ሻିଵu௟ሺs୬ሻ ൅ o௟

୬ቃN
୬ୀଵ , 

 

(20)பࣦML

பH೗
౟ ൌ ∑ െ

ଵ

ଶ
F୧ሺs୬ሻ் ቂo௟

୬o௟
୬் െ H௟ሺs୬ሻିଵ െN

୬ୀଵ

ଵ

ସ
H௟ሺs୬ሻିଵu௟ሺs୬ሻu௟ሺs୬ሻ்H௟ሺs୬ሻିଵቃ F୧ሺs୬ሻ. 

 
F is a 2-by-T୬ binary matrix defined as: 

 

F୧ሺs୬ሻ ൌ
∂u௟ሺs୬ሻ

∂u௟
୧

ൌ ቈ
0

f୧ሺsଵ
୬ሻ

f୧ሺsଵ
୬ሻ

f୧ሺsଶ
୬ሻ

f୧ሺsଶ
୬ሻ

f୧ሺsଷ
୬ሻ

…
…

f୧ሺsT౤ିଵ
୬ ሻ

f୧ሺsT౤
୬ ሻ

቉
்

 

(21)

 
where T୬ denotes the total number of frames in the n-th 
utterance, and f୧ሺs୲

୬ሻ determines whether the t-th frame of 
utterance n belongs to the cluster i or not. f୧ሺs୲

୬ሻ is defined 
precisely in Eq. (5). 

Setting all partial derivatives of Eq. (20) to zero, leads to 
a system of equations that has not a solution in closed 
formula and has to be solved iteratively. This paper proposes 
applying the well-known and efficient Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm [70] in order to solve 
the above system of equations.  

BFGS needs the first partial derivatives of the likelihood 
function given by Eq. (20). 
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4.3. GCRF Viterbi Algorithm 
 
In this section, we will briefly explain the Viterbi algorithm 
employed to determine state boundaries in GCRF. Viterbi is 
a dynamic programming algorithm for finding the most 
probable sequence of hidden states (Viterbi path). Given an 
observation vector ݋, our goal is to find ̂ݏ such that: 
 

sො ൌ argmaxୱPሺs|o; λሻ ൌ argmaxୱ
Pሺ୭,ୱ;λሻ

Pሺ୭;λሻ
 , (22)

 
where Pሺo; λሻ is independent of state sequence s and can be 
eliminated from maximization problem; therefore, 
 
sො ൌ argmaxୱPሺs|o; λሻ ൌ argmaxୱPሺo, s; λሻ. (23)
 

According to the architecture given in figure 3, state 
boundaries are determined by considering spectral features; 
thus, in equations (22) and (23), o represents the spectral 
features and other features are not incorporated in that. 
Moreover, based on the prime assumption of this paper, 
ordered pair of ሺo, sሻ forms an MRF. The distribution of this 
MRF is factorized by Eq. (6); therefore, Pሺo, s; λሻ can be 
written as: 
 

Pሺo, s; λሻ ൌ
ଵ

Z
∏ ∏ Ψ௟୲ሺo෤௟୲, s୲; λሻL

௟ୀଵ
T
୲ୀଵ . (24)

 
where the partition function, Z, is independent of both o and 
s, and is calculated through Eq. (2). Replacing Pሺo, s; λሻ with 
Eq. (24) and eliminating the constant value Z, leads to  
 
sො ൌ argmaxୱ ∏ ∏ Ψ௟୲ሺo෤௟୲, s୲; λሻL

௟ୀଵ
T
୲ୀଵ . (25)

 
For the sake of clarity in next equations, we also define 

another potential function Ԅ୲ by multiplying Ψ௟୲ over all 
dimensions,  
 
Ԅ୲ሺo, s୲; λሻ ൌ ∏ Ψ௟୲ሺo෤௟୲, s୲; λሻL

௟ୀଵ . (26)
 

This new potential function simplifies our problem as: 
 
sො ൌ argmaxୱ ∏ Ԅ୲ሺo, s୲; λሻT

୲ୀଵ . (27)
 

Now, suppose the given utterance is made up of J 
successive states. For example, if we design a five-state 
GCRF for each phoneme, this J will be calculated by 
multiplying the number of phonemes by five. Also, assume 
the last frame of j-th state is denoted by ߬୨ and ߬଴ ൌ 1. Then 
the optimization problem can be rewritten as the following 
equation: 
 

sො ൌ argmaxୱ ∏ ∏ Ԅ୲ሺo, s୲; λሻ
ఛౠ
୲ୀఛౠషభ

J
୨ୀଵ . (28)

 
Similar to HMM Viterbi, in order to break down the 

complex problem of state labeling into simpler sub-
problems, we need to define two auxiliary variables ߜ .כ߬ ,ߜ 
is a function of two variables ऄ and ࣼ, and computes the 
maximum value of the above optimization function, when 
the number of states is ࣼ and the utterance has just ऄ frames.  
 

ሺऄሻࣼߜ ൌ maxఛభ,ఛమ,…,ఛࣼషభ ቀ∏ ∏ Ԅ୲ሺo, s୲; λሻ
ఛౠ
୲ୀఛౠషభ

ࣼିଵ
୨ୀଵ ቁ ൈ

∏ Ԅ୲ሺo, s୲; λሻऄ
୲ୀఛࣼషభ

. 
(29)

This auxiliary variable can be simply computed through 
the following recursion: 
 
ሺऄሻࣼߜ ൌ max

ఛࣼషభ
ଵ൫߬ࣼିଵ൯ିࣼߜ ൈ ∏ Ԅ୲ሺo, s୲; λሻऄ

୲ୀఛࣼషభ
. (30)

 
Other auxiliary variable ߬ࣼ

 ሺऄሻ stores the frame index thatכ
maximizes the above equation. In other words, 
 
߬ࣼ

ሺऄሻכ ൌ argmax
ఛࣼషభ

ଵ൫߬ࣼିଵ൯ିࣼߜ ൈ ∏ Ԅ୲ሺo, s୲; λሻऄ
୲ୀఛࣼషభ

. (31)

 
GCRF Viterbi is performed through two steps, namely 

forward and backward steps. In the forward step, ࣼߜሺऄሻ and 
߬ࣼ

ሺऄሻ are computed for all values of 1כ ൑ ࣼ ൑ J and 1 ൑ ऄ ൑
T using the above recursions. Thereafter the backward step 
finds the optimum state boundaries. Clearly, the optimum 
and only possible value for ߬J is the total number of frames, 
i.e. T. Thus, this ߬J is used for initializing backward step. 
Other optimum state boundaries can also be computed 
through the following backward iterations: 
 
߬୨ ൌ ߬୨ାଵ

כ ൫߬୨ାଵ൯. (32)
 

It should be noted that the auxiliary variable ࣼߜሺऄሻ gets 
smaller and smaller values by increasing the frame index ऄ. 
As a result, for long sentences with a great number of states, 
the ߜ may become so small that cannot be stored correctly as 
a positive value in computers. In this case, the forward and 
backward procedure fails and returns an incorrect Viterbi 
path. As a solution to this problem, we can optimize the 
logarithm of Pሺs|o; λሻ in Eq. (23) and derive all the above 
equations for this new objective function. 
 

5. Experiments 
 
This section aims to evaluate GCRF-based acoustic modeling 
in contrast to the classical HMM-based method. To achieve 
this goal, we have conducted two sets of evaluations. The 
first one examines the performance of GCRF with some 
heuristic and overlapped context clusters. The second 
experiment investigates the impact of decision tree-based 
context clusters on the quality of GCRF spectral modeling. 
The results of these two sets of experiments are presented in 
subsections 5.3 and 5.4. Also, the next subsection provides 
the details of experimental conditions. 
 
5.1. Experimental Conditions 
 
Experiments were wholly conducted on a standard Persian 
speech database designed originally for single-speaker 
speech synthesis application [59]. This database is prepared 
completely in accordance with the CMU Arctic speech 
databases [71] and has been carefully recorded under studio 
conditions. It consists of approximately 1000 phonetically 
balanced Persian utterances with an average duration of eight 
seconds for each utterance. Furthermore, it covers most 
frequent Persian words, most frequent syllables, all bi-letters, 
and all possible bi-phones combinations. The recorded 
waveforms are packaged with contextual information 
required for building a single-speaker speech synthesis. The 
contextual information includes phoneme labels and 



S. Khorram, H. Sameti and F. Bahmaninezhad: Spectral Modeling Based on Gaussian Conditional … (Regular Paper)                                54 
 
boundaries, syllable and word boundaries, part-of-speech 
(POS) and “Ezafe”

1  tags, ToBI accentual and intonational 
phrase information, and the stress level of all syllables. More 
than 64 segmental and suprasegmental contextual factors are 
extracted for this database. 

All speech signals are sampled at 16 kHz sampling rate, 
windowed by a 25-ms Blackman window with 5-ms shift. 
Spectral and excitation features were extracted by 
STRAIGHT vocoder [5]. These acoustic features include 25 
mel-cepstral coefficients [68, 69], five band pass aperiodicity 
parameters [72] related to five sub-bands (0-1, 1-2, 2-4, 4-6, 
and 6-8 kHz), and a fundamental frequency. Above features 
along with their derivatives were used as the speech 
parameters in implemented systems.  

A 5-state multi-stream single-mixture left-to-right with 
no skip path HMM was trained as the baseline system using 
the publicly available HTS toolkit [73]. To handle undefined 
F0 values in unvoiced frames, F0 stream was modeled by a 
multi-space probability distribution [20]. Also, state duration 
probabilities are explicitly represented by a Gaussian 
distribution using hidden semi-Markov modeling framework 
[21]. Prevalent maximum likelihood-based decision tree 
construction algorithm used to tie HMM states, and MDL 
criterion was used to determine the size of the decision trees. 
Similar to [49], MDL tuning factor was set to be 1/3 for all 
decision trees. Additionally, the first algorithm proposed in 
[9] which maximizes output probability was adopted to 
generate parameters from trained models.  

During HMM training for the baseline synthesis system, 
the stream weight for the aperiodicity was set to zero. Thus, 
the forward-backward procedure depended only on the 
spectral and F0 features. In other words, model parameters of 
aperiodicity components were trained in the normal way, but 
they do not contribute to the calculation of forward and 
backward variables.  

Experiments were conducted on 4 different training sets 
with 50, 100, 200, and 400 utterances. Additionally, a fixed 
set of 200 utterances, not included in the training sets, was 
used for testing. 
 

5.2. Employed Contextual Factors 
 
In our experiments, contextual factors contained several 
levels, including phonetic, syllable, word, phrase and 
sentence level factors. In each of these levels both general 
and detailed factors were taken into account. Features such as 
phoneme identity, syllable stress pattern or word part of 
speech tag are examples of general features and a question 
like the position of the current phoneme is a sample of 
detailed one. Specific information with regard to contextual 
features is presented in this subsection.  
 

 Phonetic-level features 
 Phoneme identity of the two preceding, preceding, 
current, succeeding, and two succeeding phoneme. 
 Position of the current phoneme in the current syllable 
(forward and backward). 
 Whether this phoneme is “Ezafe” or not. 
 

 Syllable-level features 
 Stress level of this syllable (5 different stress levels 
are defined for our speech database). 
 Position of the current syllable in the current word 
and phrase (forward and backward). 

 Type of the current syllable (syllables in Persian 
language are structured as CV, CVC, or CVCC, where C 
and V denote consonants and vowels, respectively). 
 Number of the stressed syllables before and after the 
current syllable in the current phrase. 
 Number of syllables from the previous stressed 
syllable to the current syllable. 
 Vowel identity of the current syllable. 
 

 Word-level features 
 Part of speech (POS) tag of the preceding, current and 
succeeding word. 
 Position of the current word in the current sentence 
(forward and backward). 
 Whether the current word contains “Ezafe” or not. 
 Whether this word is the last word in the sentence or 
not. 
 

 Phrase-level features 
 Number of syllables in the preceding, current, and 
succeeding phrase. 
 Position of the current phrase in the current sentence 
(forward and backward). 
 

 Sentence-level features 
 Number of syllables, words, and phrases in the 
current sentence. 
 Type of the current sentence. 

 
5.3. Evaluation Results of GCRF with Heuristic 
Contextual Regions 
 
In this experiment, a synthesis system named GCRF1 was 
developed based on the proposed approach. This system 
adopted 150 highly overlapped contextual regions that were 
designed carefully. The indicator functions f୧ሺsሻ in equations 
(20) and (22) were defined based on these 150 contextual 
regions. To define the indicator functions, first, a set of 64 
initial contextual factors were extracted for each segment 
(phoneme) of the Persian database. Some of these initial 
factors are mentioned in the previous subsection. Then, from 
these contextual factors, a set of approximately 8000 
contextual questions were designed and the baseline HMM-
based system was trained using them. Each question can 
form two regions; therefore, these 8000 questions can be 
converted to 16000 regions. For each stream of GCRF1 a set 
including 150 contextual regions that seem to be more 
important for that stream were selected and GCRF1 was 
trained using them. Regions of GCRF1 were selected based 
on the linguistic knowledge of Persian language. 

Both subjective and objective tests have been conducted 
to assess the performance of the proposed GCRF-based 
spectral modeling in contrast to the conventional HMM-
based method. As a relevant objective measure, average mel-
cepstral distortion (MCD) [74, 75] between generated and 
natural spectral trajectories was calculated. This MCD 
measure between two corresponding mel-cepstral vectors is 
defined by the following equation: 
 

MCD ൌ
ଵ଴

୪୬ሺଵ଴ሻ
ට2 ∑ ൫mc୧

୲ െ mc୧
୮൯

ଶଶହ
୧ୀଵ , (33)

 
Where mc୧

୲  and mc୧
୮  are respectively termed target and 

predicted i-th mel-cepstral component. 
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For calculating the average mel-cepstral distance, the 
length of natural and generated trajectories has to be exactly 
the same. In order to equalize the length of generated and 
natural trajectories, we first conducted a Viterbi algorithm to 
obtain the most likely state durations of the natural 
trajectories and then GCRF trajectories were generated in 
accordance with the obtained durations. 

We also employed preference score measure [76] to 
compare the proposed and HMM-based systems subjectively. 
20 subjects were presented with 10 randomly chosen pairs of 
synthesized speech from the two models and then asked for 
their preference.  

Figures 4 (a) and 4 (b) show the results of objective and 
subjective evaluations. Remarkably, the GCRF1 system is 
noticed to be of a great interest when the training data is 
limited. The superiority of GCRF1 over HMM is clear in the 
training sets containing 50 and 100 utterances. Gradually, as 
the number of utterances in the training set increases, HMM 
surpasses GCRF1. It is mainly because GCRF with some 
heuristic contextual regions is unable to balance the model 
complexity with the size of training data. In other words, for 
larger databases, it is expected to have a model with larger 
number of parameters, but GCRF1 applies the same number 
of parameters for all databases. Therefore, we need to think 
about a procedure that balances the GCRF model complexity 
against the size of training data. Next section gives a naïve 
idea to overcome this issue. 
 

5.4. Evaluation Results of GCRF with Decision 
Tree-Based Contextual Clusters 
 
A fundamental solution to the problem of aligning model 
complexity with the amount of training data is to conduct 
clustering methods such as decision tree construction 

algorithms over GCRF states. However, clustering GCRF 
states using an optimum structure (e.g. maximum likelihood 
clustering [60]) leads to an extremely complicated procedure 
which is computationally impossible to implement. 
Therefore, this section proposes borrowing the decision tree-
based clusters of conventional HMM. GCRF using HMM 
contextual clusters is named GCRF2 in this subsection.  

Both objective and subjective tests were conducted in this 
subsection as well. MCD measure and preference score are 
selected for the objective and subjective evaluations. For the 
preference score, 10 native participants were asked to listen 
to 30 randomly chosen pairs of synthesized speech samples 
generated by two different systems (HMM and GCRF2). 
Figures 5 (a) and 5 (b) show the results of objective and 
subjective tests. As it can be seen in the figures, both 
objective and subjective tests confirm the superiority of the 
proposed method over the conventional HMM in all 
databases. 
 

6. Conclusion 
 
The goal of this paper is to address the important problem of 
state independence assumption in HMM and propose a new 
spectral modeling approach that relaxes this inaccurate 
assumption using the capabilities of Gaussian conditional 
random fields. The proposed GCRF-based spectral modeling 
has also been incorporated in a new statistical parametric 
speech synthesis system. In the training phase of this new 
speech synthesis system, a Viterbi-type framework that 
maximizes the likelihood measure has been developed. 
Synthesis phase has been performed through a maximum 
output probability parameter generation algorithm followed 
by a STRAIGHT vocoder. Additionally, two methods have 

(a) 

(b) 
Figure 4. evaluation results comparing GCRF1 with HMM
using (a) MCD measure (b) preference score. 

 

(a) 

(b) 
Figure 5. the results of objective and subjective tests 
evaluating the performance of GCRF2 in contrast to the 
HMM. (a) MCD measure result, (b) preference score test. 
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been proposed to capture the context dependencies in the 
proposed GCRF-based spectral modeling. The first one was 
based on some heuristic contextual regions. Conducted 
subjective and objective evaluations confirmed that the 
heuristic contextual regions are just effective for small 
databases. The second method has been designed based on 
decision tree-based regions which are noticed to be effective 
in all databases. Reported subjective and objective tests 
prove the effectiveness of the second method of capturing 
contextual dependencies in all databases. 

All of the above advantages are achieved at the expense 
of extremely high computational complexity parameter 
estimation algorithm. Indeed, the proposed BFGS 
optimization procedure requires large processing resources 
which prevent us to derive and implement an optimum 
context clustering technique. Our future works are devoted 
to: (i) introduce a more efficient parameter estimation 
algorithm requiring less computational resources. (ii) 
incorporate the proposed algorithm in an optimum context 
clustering technique and express the relationship between 
acoustic features and contextual factors directly based on 
GCRF modeling scheme. 
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1 “Ezafe” is a special feature in Persian, normally pronounced as a short 
vowel “e” and relates two words together. Ezafe is not written but is 
pronounced and has a profound effect on intonation. 
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