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ABSTRACT
Automatic emotion recognition from audio-visual data is a
topic that has been broadly explored using data captured
in the laboratory. However, this data is not necessarily rep-
resentative of how emotion is manifested in the real-world.
Recent work aims to adapt these earlier methods to data
collected in the wild. In this paper, we describe our pro-
posed system for the 2016 Emotion Recognition in the Wild
challenge. We use the Acted Facial Expressions in the Wild
database 6.0 (AFEW 6.0), which contains short clips of pop-
ular TV shows and movies that contain more variability in
the data than laboratory recordings. While previous sub-
missions have concentrated on visual features, we explore
a method which fuses together both the audio and visual
modalities. We explore a set of features that incorporate in-
formation from facial expressions and speech, in addition to
cues from the background music and overall scene. We de-
sign sets of pairwise and multiclass classifiers and fuse the re-
sulting systems. Our fusion increases the performance from
a baseline of 38.81% and 40.47% to 43.86% and 46.88% for
validation and test sets, respectively. While the video fea-
tures perform better than audio features alone, a combina-
tion of the two modalities achieves the greatest performance.
This demonstrates the effectiveness of multimodal emotion
fusion. Because of the flexible design of the fusion, it is
easily adaptable to other multimodal learning problems.
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1. INTRODUCTION
Automatic emotion recognition from human vocal and fa-

cial expressions has received attention in a variety of fields
ranging from computer science, to psychology and psychi-
atry [3, 12]. In particular, recent work has focused on de-
veloping automatic emotion recognition systems for more
natural, spontaneous multimedia data [7]. In this work, we
present a system that can identify human emotion ‘in the
wild’, defined as emotion collected in variable settings. We
propose a fusion of audio-visual emotion recognition systems
that automatically classifies seven different emotions in short
movie clips for the 2016 Emotion Recognition in the Wild
challenge.

Emotion datasets collected in a controlled laboratory set-
ting have been widely used in emotion recognition research
[3, 4, 12]. These datasets provide insight into how humans
express different types of emotion. However, open questions
still remain whether techniques developed in these settings
can be transferred to datasets collected in the wild. The
2016 Emotion Recognition in the Wild challenge provides
an opportunity to test data in a real-world context. The
Acted Facial Expressions in the Wild database 6.0 (AFEW
6.0), accompanying the challenge, presents short clips taken
from popular movies. Each clip contains a multitude of dif-
ferent visual and audio cues that could be interpreted as
indicators of emotion. Capturing and interpreting all these
different types of cues in a single system is difficult. The
successful detection of emotion in a setting outside the labo-
ratory would allow for real-world applications, ranging from
the recommendation of movies based on emotion content to
aiding individuals with mental disorders, such as autism.

Previous work on the AFEW dataset focused on the
video modality and considered audio of secondary impor-
tance [16, 20]. We present a unified system that is designed
from the bottom up to combine information from the video
and audio modalities. We present an ensemble approach
that fuses different classification models. The fusion of mul-
tiple classifiers has been shown to be particularly effective
for smaller data sets [17].

The overview of our proposed system is shown in Figure
1. We extract a variety of audio and video features that de-
scribe the overall emotional information of a video clip, such
as speech prosody and energy features, HSV color histogram
features, pixel intensity features, Action Unit (AU) features,
and LBP-TOP features. We build two sets of emotion classi-
fication systems, one with Support Vector Machines (SVMs)
and the other with Random Forests (RF), and use a classifier
fusion approach to combine the two systems.



Figure 1: The fusion of pairwise and multiclass subsystems. The mean is taken over each subsystem type. Votes are counted
using the pairwise mean confidences. These vectors are multiplied to get the final confidences. The emotion is selected with
the maximum confidence.

Fold Train Val Train+Val Test
Angry 133 64 197 83
Disgust 74 40 114 36

Fear 81 46 127 66
Happy 150 63 213 135
Neutral 144 63 207 174

Sad 117 61 178 71
Surprise 74 46 120 28

Total 773 383 1156 593

Table 1: The number of utterances in each of the emotion
classes and fold divisions.

Our experimental results on the challenge dataset show
an improvement from a baseline performance of 38.81% and
40.47% to 43.86% and 46.88% for val and test sets, respec-
tively. This demonstrates the effectiveness of including dif-
ferent modalities and learning paradigms for emotion detec-
tion. The key contributions of our system are as follows:

• We demonstrate that a wide range of audio-visual fea-
tures can be used for emotion classification in the wild.

• We introduce a fusion method that utilizes different
emotion classifiers and combines both pairwise and
multiclass knowledge. This differs from prior work that
focused on a single emotion classifier.

2. DATASET AND FOLDS
The AFEW 6.0 dataset contains popular TV and movie

clips divided into seven categorical emotions including angry,
disgust, fear, happy, neutral, sad, and surprise. The amount
of utterances in each of these emotions is shown in Table
1. The clips have an average length of 2.46 seconds with a
standard deviation of 1.00 seconds.

The dataset is divided into train, validation (val) and test
sets. During the development of the component classifiers
(called subsystems below) we combined the train and val
sets and performed 10-fold cross-validation. This allowed us
to get a better estimate of the actual test performance than
only using val for performance measurement. We report
val accuracy when the system is only trained using the train

fold. Finally, the test accuracy is determined using a system
trained on both the train and val sets.

3. FEATURE EXTRACTION
Interspeech 2010 Acoustic Feature Set (IS10). We

use the Interspeech 2010 feature set, extracted using openS-
MILE [10]. This feature set contains a variety of statistics
over frame-level acoustic features including loudness, Mel-
frequency cepstrum coefficients (MFCCs), line spectral pairs
(LSPs), fundamental frequency (F0), voicing, shimmer, and
jitter. This results in 1592 utterance-level features.

Dimensional Emotion Estimates (VAD). We hy-
pothesize that auxiliary emotion characteristics will be help-
ful for predicting categorical emotion labels. We train re-
gressors for valence (positive vs. negative), activation (calm
vs. excited) and dominance (dominant vs. submissive) on
outside emotion corpora. We apply these models to the
AFEW 6.0 data, resulting in a set of secondary features.
AFEW 6.0 contains both speech and background music.
Therefore, the regressors are trained on both speech and
music emotion corpora, including: the improvisation part of
IEMOCAP [3] (4784 utterances), the spontaneous and im-
provisation part of MSP-IMPROV [4] (7452 utterances), and
a self-collected music corpus containing 200 30-second music
clips ranging from classical music, film score to pop music.
The two speech corpora have labels for valence, activation
and dominance, while the music corpus only has labels for
valence and activation. This results in 8-dimensional esti-
mates for each utterance (valence × 3 corpora, activation ×
3 corpora, dominance × 2 corpora). For the speech corpora,
we train the regressor of each dimension (e.g., valence) us-
ing the multi-task feature learning method proposed in [1]
to avoid overfitting to specific dataset, with each corpus as
a task. This method assumes that there exists a common
sparse feature representation, either on the original feature
space or a transformed feature space, across tasks. In this
work, we assume the shared representation is on the origi-
nal feature space. For the music corpus, we use regularized
linear regression. For both algorithms, the regularization
parameter C is selected using 5-fold cross-validation on the
training corpus, in the range between {10−6, 10−5, ..., 106}.
The IS10 feature set described above is used.



HSV Color Histogram (HSV). We extract the color
histogram in the HSV color space at frame-level, as in previ-
ous work on gif emotion recognition [14]. We set the quan-
tization level to 8 for hue, and 2 for saturation and value.
We calculate 8 statistics, including mean, standard devia-
tion, max, min, range, upper quartile, lower quartile and
interquartile range over the frame-level feature. This results
in 256 (32 × 8) utterance-level features.

Pixel Intensity Change (PIC). We extract features
that reflect the change between frames. We take the mean,
standard deviation, max and min of the intensity image of
each frame (converted from the color image), and the ab-
solute difference between two consecutive frames. We also
calculate the mean-squared error between each pair of con-
secutive frames. This results in a 9-dimensional frame-level
feature vector. Again, we applied the above-mentioned 8
statistics to generate the 72 utterance-level features.

Action Unit Features (AU). We use Action Unit (AU)
features extracted using CERT [15]. AU features capture
anatomical movement of facial muscles related to emotion
[9]. The CERT AU features include: (i) AU 1, 2, 4, 5, 6,
7, 9, 10, 12, 14, 15, 17, 18, 20, 23, 24, 25, 26, 28, 45, (ii)
fear brow (AU 1+2+4) and distress brow (AU 1, 1+4), and
(iii) the left and right unilateral features of AU 10, 12, and
14. This results in 28-dimensional frame-level AU features
in total. We applied 10 statistics to the frame-level features,
which are: mean, standard deviation, max, min, range, up-
per quartile, lower quartile, interquartile range, skewness
and kurtosis. Note that the statistics are only calculated
for utterances where at least half of the frames had AUs ex-
tracted successfully. Only 929 out of the 1156 training and
validation utterances, and 469 out of the 593 test utterances
have valid utterance-level AU features.

Local Binary Pattern-Three Orthogonal Planes
Features (LBP-TOP). We use Local Binary Pattern-
Three Orthogonal Planes (LBP-TOP) features [21] pro-
vided in the challenge dataset [8]. LBP-TOP features are
histogram-based image features that describe texture of an
image, and it has been widely used in facial emotion recog-
nition (a comprehensive survey can be found in [19]). This
results in 2832-dimensional LBP-TOP features calculated
over each utterance. The LBP-TOP features are not avail-
able for 29 utterances in the train and val sets.

4. DATA MODELING

4.1 Support Vector Machines
We build a binary SVM for each of the 21 pairs of emo-

tions, and use majority vote to decide the final predicted
label. We construct different combinations of five sets of fea-
tures in preliminary experiments, and only select the com-
binations (see Table 2) that produce 10-fold cross-validation
accuracy higher than 35% for further classifier fusion (Sec-
tion 5). For each feature combination, we train two versions
of SVM: with Information Gain (IG) feature selection [6]
and without. In the former version, we apply IG feature se-
lection for each binary classification. Features with zero IG
are removed. This results in 20 SVM subsystems each with
21 binary emotion comparisons.

Leave-one-fold-out validation is performed on the train-
ing set to select the SVM hyper-parameters. When gen-
erating the final test predictions, the classifiers are built
using the full training set. We implement the subsystems

Audio Feats. Video Feats. Accuracy
IS10 VAD HSV PIC AU No IG With IG

36.4% 35.8%
36.9% 35.4%
37.8% 35.3%
37.7% 38.3%
39.3% 37.2%
40.5% 38.5%
41.3% 40.0%
42.7% 44.4%
42.5% 44.6%
43.2% 45.0%

Table 2: 10-fold train+val accuracy on the SVM subsystems.
Only those greater than 35% accuracy are shown and used.
These are sorted in order or performance.

Feature Sets Accuracy
IS10+VAD+HSV 38.1%

IS10+VAD+HSV+AU 45.4%
LBP-TOP 38.3%

Table 3: 10-fold train+val accuracy on the random forest
subsystems using different feature sets.

using LIBSVM [5], and adopt the radial basis function
(RBF) kernel. The range of the kernel width parameter γ is
{2−10, 2−9, ..., 2−1}, and the range of the cost parameter C
is {10−5, 10−4, ..., 105}.

We report the accuracy of each subsystem using the 10-
fold train+val set described in Section 2 in Table 2. This
accuracy is used to evaluate the subsystems in the develop-
ment phase. While AU features alone provide better perfor-
mance than the others combined, the addition of audio fea-
tures to AU features increases the subsystem performances
from 37.2% to 44.6% when using IG.

To facilitate the overall classifier fusion, we calculate the
sigmoid transformation of the absolute decision value to rep-
resent the confidence level of each binary prediction.

4.2 Random Forests
In addition to the pairwise modeling described above, we

perform multiclass modeling using a Random Forest (RF)
classifier with the feature sets described in Table 3. These
include a combination of IS10, VAD, HSV, and AU features
shown to be particularly effective in pairwise classification.
Additionally, the high-dimensional LBP-TOP features are
used as another source of video modality information. RF
has been shown to work particularly well with small datasets
of high dimensionality [2]. A RF classifier works by building
a set of N trees using bootstrapped samples of the original
dataset. Only a random subset of the features are used
to create the splits at each node. Given a test example, a
RF classifier computes the confidences by considering the
proportion of trees that predict each class label.

The 10-fold train+val cross-validation accuracy of using
RF on the different feature sets is shown in Table 3. We
run cross-validation on the training data to pick the opti-
mal number of trees, N . We fix the random number of
features to be considered at each step to

√
d, where d is the

dimensionality of the feature vector, as typically used for
RF. Unlike the SVM-based approach described above, we



(a) Train+Val (Accuracy = 46.54%) (b) Val (Accuracy = 43.86%) (c) Test (Accuracy = 46.88%)

Figure 2: Confusion matrices and accuracies of the train+val, val, and test sets.

do not apply any feature selection to reduce the number of
features when using RF classifier.

To facilitate the overall classifier fusion, the fraction of
decision trees in the RF selected as each emotion is output
as the seven-dimensional confidence vector.

5. CLASSIFIER FUSION
We fuse the above-mentioned pairwise SVM and mul-

ticlass RF models (Figure refFusionDiagram). Ensemble
learning provides a process to optimally combine a set of
classifiers based on the confidence of each classifier, individ-
ually [17]. Many different combination rules were examined
including decision trees, stacked generalization, and logistic
regression. However, simple averaging over the confidences
of subsystems produced the highest cross-validation accu-
racy. Additionally, we develop a methodology for combining
pairwise and multiclass confidences.

Each pairwise SVM subsystem outputs a 7x7 matrix of
confidences for each utterance. In this matrix, the confi-
dence at index (i, j) represents the confidence of selecting
emotioni instead of emotionj . This value ranges from -1 to
1 and can be negative if selecting emotionj is more confident
than emotioni. Additionally, each multiclass RF subsystem
outputs a seven-dimensional vector of confidences that is a
probability distribution for each utterance.

For each utterance, a gating function is applied to the
subsystems. Only the outputs of subsystems trained includ-
ing AU features are used when utterance AU features are
properly extracted. Conversely, when AU extraction fails
we only include subsystem outputs trained without AU fea-
tures. However, the LBP-TOP random forest subsystem
is always included to provide information from the video
modality even when AU is not available.

Once the subsystems are selected using the above gat-
ing method, the confidence matrices of the pairwise subsys-
tems are averaged. In particular, this method works well
when each classifier is differentiated from one another [18].
This allows for more confident systems to have a stronger
impact in the decision, as subsystems with low confidence
on a particular utterance will be near zero. Each of the
pairwise decisions are considered by tallying the votes for
each winning emotion, as typically used for one-versus-one
SVMs [13]. This results in a seven-dimensional vector of
emotion votes between zero and six. This is multiplied by
the mean confidence vector of multiclass subsystems to fur-
ther decrease the likelihood of those emotions given low con-
fidence in the multiclass context. This results in the final

confidence scores. The emotion associated with the highest
confidence score is selected.

6. RESULTS
The confusion matrix for the train+val, val, and test re-

sults can be seen in Table 2. Our fusion method results in
an increase in accuracy for the best subsystem train+val 10-
fold cross-validation (46.5%). This supports previous work
demonstrating that classifier fusion can improve the perfor-
mance of an audio-visual emotion recognition system [11].
Additionally, we achieve 43.86% on the val fold, a 5.05% in-
crease from the baseline of 38.81%. Finally, the fusion has
an accuracy of 46.88% on the test set, a 6.41% increase from
the baseline of 40.47%.

Similar to previous Emotion in the Wild papers, our sys-
tem performs best on the majority class emotions of angry,
happy, and neutral [16,20]. This may be due to (i) the class
imbalance in the training data and (ii) our choice of accu-
racy as the performance measure. Less importance is given
to the minority classes when validating the system using ac-
curacy instead of a measure such as unweighted average re-
call (UAR). We believe that this strong performance is also
in part due to the acoustic feature sets that are effective at
capturing the high energy speech present in anger and hap-
piness. On the contrary, the lack of high-energy speech is
likely an indicator of neutrality.

7. CONCLUSIONS
The 2016 Emotion Recognition in the Wild challenge has

provided a collection of popular TV and movie clips span-
ning different emotions. The small size of the dataset (72
minutes) provides a difficult learning task well suited to en-
semble learning. In this paper, we present a collection of
subsystems trained using pairwise and multiclass method-
ologies. They are built on a variety of features designed to
represent emotion present in the face and speech of actors,
as well as the cues from the musical scores and overall scene.
We created a fusion of these subsystems based on classifier
confidence. We improve from the baseline performance of
38.81% and 40.47% to 43.86% and 46.88% for validation and
test sets, respectively. We demonstrate that a combination
of the audio and video modalities outperforms video alone
with an improvement from 37.2% to 44.6% for the SVM
subsystems. This demonstrates the effectiveness of leverag-
ing a variety of features and models to detect emotion when
working with data captured in highly variable settings.
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